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Abstract

Connections Between Lanczos Iteration and Orthogonal Polynomials

by Christopher G. Green

Chair of Supervisory Committee:

Professor Anne Greenbaum
Mathematics

In this thesis we examine the connections between orthogonal polynomials and the

Lanczos algorithm for tridiagonalizing a Hermitian matrix. The Lanczos algorithm

provides an easy way to calculate and to estimate the eigenvalues and eigenvectors of

such a matrix. It also forms the basis of several popular iterative methods for solving

linear systems of the form Ax = b, where A is an m ×m Hermitian matrix and b is

an m × 1 column vector. Iterative methods often provide significant computational

savings when solving such systems.

We demonstrate how the Lanczos algorithm gives rise to a three-term recurrence,

from which a family of orthogonal polynomials may be derived. We explore two of

the more important consequences of this line of thought: the behavior of the Lanczos

iteration in the presence of finite-precision arithmetic, and the ability of the Lanczos

iteration to compute zeros of orthogonal polynomials. A deep understanding of the

former is crucial to actual software implementation of the algorithm, while knowledge

of the latter provides an easy and efficient means of constructing quadrature rules for

approximating integrals.
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NOTATION

In the sequel, capital letters will be used to denote matrices, and lower case letters

will denote vectors. Furthermore,

• A will denote a Hermitian square matrix of dimension m×m, and b will denote

a given column vector of dimension m × 1. Both A and b will be assumed to

have complex entries unless otherwise noted.

• Unless otherwise noted, all vector norms will be the usual Euclidean norm, ‖·‖2,

and all matrix norms will be the induced spectral norm,

‖A‖ = max
‖v‖=1

‖Av‖ .

We will, on occasion, make use of the Frobenius norm ‖·‖F , which is defined by

‖A‖F =

{∑
i

∑
j

|aij|2
}1/2

.

• The m ×m identity matrix will be denoted Im; its n-th column, which corre-

sponds to the standard unit basis vector in the n-th direction, will be denoted

by en.

• The transpose of a matrix will be denoted by a superscript “T”, and the con-

jugate transpose will be denoted by a superscript “*”.

• The space of (complex-valued) continuous functions on a set E will be denoted

C(E), and the space of (complex-valued) square-integrable functions on E will

vii



be denoted L2(E). We will usually assume that L2(E) has been endowed with

its usual inner product,

〈f(x), g(x)〉 =

∫
E

f(x)g(x) dx.

• The rounding unit or machine precision will be denoted ε.

• The symbol := will be used to denote a definitional equality.

viii
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INTRODUCTION

The Lanczos algorithm, in essence, is a means for constructing an approximate

tridiagonalization of a Hermitian matrix. It forms the basis of several popular iterative

methods for solving linear systems of the form Ax = b, where A is an m×m Hermitian

matrix and b is anm×1 column vector. In many practical applications (such as solving

a discretized differential equation), A is a large (i.e., m ∼ 10, 000) sparse matrix; here

iterative methods can often reduce the work required to solve Ax = b to O(m2) or even

O(m) operations, whereas Gaussian elimination can require up to a computationally

intractable O(m3) operations.

The Lanczos algorithm also provides an easy way to compute and to approximate

the eigenvalues of Hermitian matrices. From the exact tridiagonal factorization of a

Hermitian matrix A we can find its eigenvalues easily. Moreover, the approximate

factorizations produced by the Lanczos algorithm yield very good approximations to

the true eigenvalues of A, often with far less work. This is especially useful when we

are only interested in a few of A’s eigenvalues.

The power of the Lanczos algorithm stems from its inherent three-term recurrence,

which states that a certain linear combination of three consecutive vectors is iden-

tically zero. It is a well-known fact from the theory of orthogonal polynomials that

certain three-term recurrences give rise to families of polynomials that are orthogo-

nal with respect to some weight function. Thus, the Lanczos algorithm effectively

constructs families of orthogonal polynomials.

This line of thought gives us one method of analyzing the effects of finite-precision

arithmetic on the Lanczos iteration. While in exact arithmetic the Lanczos algorithm
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is guaranteed to converge in at most m steps, this is not necessarily the case when

the algorithm is performed on a standard computer. Much effort has been put into

the task of quantifying exactly how adversely rounding errors affect the Lanczos al-

gorithm, and, even though there are still several unanswered questions in this area,

we have a solid understanding of the general behavior of the algorithm.

Another consequence of the connection between orthogonal polynomials and the

Lanczos iteration is that the algorithm provides a computationally stable way to

compute the zeros of certain families of orthogonal polynomials. These zeros are

important in constructing quadrature rules for approximating integrals.

In this thesis, we will explore these connections. We have attempted to make as

few assumptions as possible as to the background of the reader. Basic knowledge of

linear algebra and analysis, at the level of an advanced undergraduate course, should

be sufficient.
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Chapter 1

RUDIMENTS OF ITERATIVE METHODS

We begin with a review of the machinery underlying the Lanczos iteration, namely,

Krylov subspaces. Krylov subspaces were originally introduced by Alexei N. Krylov in

a 1931 paper [21] as a tool for investigating the characteristic polynomials of matrices

of small dimension [2, 26]. As we shall see, they have become a very powerful tool in

numerical analysis and approximation theory.

The underlying idea for many iterative methods is to reduce the original problem

to a sequence of matrix problems of smaller dimension by projecting it onto lower

dimensional Krylov spaces. In order to make this concept more plain, we pause

briefly to review a few facts about approximations from subspaces in general.

1.1 Approximations from Subspaces

Throughout the present section, S will denote an arbitrary subspace of Rm. Its di-

mension will be denoted by n and its set of basis elements will be written {s1, . . . , sn}.

When explicit mention of the dimension of S is necessary to avoid confusion, we shall

use a superscript (e.g., Sn).

Recall that an A-invariant subspace is a subspace satisfying AS ⊂ S. It is not

hard to show (see [26]) that

1. an A-invariant subspace has a basis of eigenvectors of A; and

2. A|S , the restriction of A to S, is a self-adjoint operator.



4

Given an m× n matrix Q = [q1| . . . |qn], we may ask whether its column space

Q = span {q1, . . . , qn} (1.1)

is A-invariant. By the definition of A-invariance, we know that if Q were A-invariant,

there would exist constants cij such that

Aqj =
∑
i

qicij, j = 1, . . . , n. (1.2)

In light of this, it makes sense to define the residual matrix of Q by

R(Q) = AQ−QC, (1.3)

where C = [cij] is the n × n matrix that minimizes ‖R(Q)‖ (in the least squares

sense) [26]. When Q has full rank, the unique solution to this problem is given

by C = (Q∗Q)−1Q∗AQ [31]. Clearly, we will have R(Q) = 0 iff Q is A-invariant.

Furthermore, if y is an eigenvector of C corresponding to the eigenvalue λ, then Qy

is an eigenvector for A that also corresponds to λ.

If the columns of Q are orthonormal, then the formula for C reduces to Q∗AQ,

which is Hermitian when A is Hermitian. Since Q∗Q = I, we recognize C in this

special case as the matrix Rayleigh quotient of Q.

1.1.1 Rayleigh-Ritz Approximation

Often, the subspace in question is not quite A-invariant. Since an invariant subspace

would give us the exact eigenvalues of A, we might suspect that a subspace that just

fails to be A-invariant might provide us with good approximations to the eigenvalues

of A. This reasoning underlies Rayleigh-Ritz Approximation, a very powerful

tool for computing approximations to eigenvalues and eigenvectors of matrices.

The full Rayleigh-Ritz procedure may be found in [26]; we summarize it here

briefly. Given our arbitrary subspace S, let S denote the matrix whose columns are

the basis elements of S. The Rayleigh-Ritz algorithm begins by transforming S to a
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matrix Q with orthonormal columns. It then forms the matrix C = Q∗AQ defined

above, and computes the eigenvalues θi and corresponding eigenvectors gi of C. The

corresponding approximate eigenvectors of A are then given by yi = Qgi. Finally,

residual errors ri = Ayi − θiyi are computed as a measure of the accuracy of the

approximation.

In this context, the “eigenvalues” θi are known as Ritz values, and the “eigen-

vectors” yi are known as Ritz vectors. The pair (θi, yi) is collectively known as a

Ritz pair.

There is much to be said about the optimality (given no other a priori information

about A) of the Rayleigh-Ritz approximations (θi, yi) to the true eigenpairs (αi, zi)

of A, and unfortunately, a thorough treatment of this subject would take us too far

astray. We only state a few of the major results here; the reader is encouraged to

read the excellent book of Parlett [26] for more details.

One sense in which the Rayleigh-Ritz approximations are optimal is immediate

from the description of the algorithm. As the reader may recall, the Rayleigh quotient

C = Q∗AQ minimizes the quantity ‖AQ−QZ‖ (where Q is a fixed orthonormal

matrix) over all matrices Z. Thus

min
Z
‖AQ−QZ‖ = ‖AQ−QC‖ = ‖AQ−QGΘG∗‖ ,

where G = [g1| . . . |gn] and Θ = diag (θi);

= ‖AY − YΘ‖ , (1.4)

where Y = QG is the matrix of Ritz vectors. Conversely, suppose that S is an m× n

matrix having orthonormal columns that span the same space as the columns of Q.

Since both sets of columns span the same n-dimensional space, we know that S = QU

for some n × n unitary matrix U . Therefore, if ∆ is any n × n diagonal matrix, we
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have

‖AS − S∆‖ = ‖AQU −QU∆‖ = ‖AQ−QU∆U∗‖

≥ ‖AQ−QC‖

by (1.4). Thus we have shown that the quantity ‖AS − S∆‖ is minimized over all

pairs (S,∆), where S and ∆ have the form described above, precisely when S = Y

and ∆ = Θ [12].

The Ritz pairs are also optimal approximations in the sense of a minimax prob-

lem. The well-known Courant-Fischer theorem gives us a characterization of the

eigenvalues of a matrix in terms of a variational problem:

Theorem 1.1 (Courant-Fischer). Let {αj}mj=1 be the eigenvalues of A. Assume that

the eigenvalues have been ordered so that α1 ≤ α2 ≤ · · · ≤ αm. Then for each j,

αj = min
T ⊂Rm

dim T =j

max
t∈T
t6=0

ρ(t), (1.5)

where ρ(x) is the Rayleigh quotient of A.

See [18] or [26] for a proof of this theorem.

As demonstrated in [26], it is a direct consequence of the Rayleigh-Ritz construc-

tion that the Ritz values satisfy a similar variational characterization, namely

θj = min
T ⊂S

dim T =j

max
t∈T
t6=0

ρ(t). (1.6)

Finally, the Rayleigh-Ritz approximations from S are also optimal in the following

sense. Let P be the orthogonal projector onto S and consider PA, the projection of

A onto S. It is easy to see that S is PA-invariant: if s ∈ S, then (PA)s = P (As) is

always a vector in S. Whereas the restriction of A to S is not an operator from S

into itself (since S is not A-invariant), the restriction PA|S of PA to S is. It can be

shown (see [26]) that the Ritz pairs (θi, yi) are the eigenpairs of PA|S . This fact will

be of use to us in our discussion of Krylov spaces.
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We have now laid a solid foundation for our future discussion of the Lanczos

algorithm. Before we can breach this topic, however, a few words must be said about

Krylov subspaces, the framework upon which the Lanczos algorithm is built.

1.2 Approximations from Krylov Subspaces

We first define the notion of a Krylov sequence. The Krylov sequence associated

with A and b is the sequence

b, Ab,A2b, A3b, . . . (1.7)

The n-th Krylov subspace Kn(b;A) (or simply Kn when there is no opportunity

for confusion) is then the span of the first n vectors of the Krylov sequence:

Kn := span
{
b, Ab,A2b, . . . , An−1b

}
. (1.8)

We will also make use of the associated n-th Krylov matrix Kn, which is defined

as the matrix whose i-th column is the i-th element of the Krylov sequence:

Kn =


b | Ab | . . . | An−1b


.

Krylov subspaces have many nice properties which make them the ideal subspace

from which to construct approximations to many matrix problems. For instance,

notice that we do not actually need to know the matrix A to form Kn, only how to

form products of the form Av, where v is a vector.

It is also clear that each vector x ∈ Kn can be expressed in the form p(A)b, for

some polynomial p of degree ≤ n − 1. Conversely, if p is a polynomial of degree

≤ n − 1, then p(A)b is an element of Kn. Thus we have the following alternative
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characterization of Kn:

Kn = {p(A)b : p a polynomial of degree ≤ n− 1} . (1.9)

Perhaps the most important application of Krylov subspaces is the Lanczos algo-

rithm, to which we now turn our attention.

1.3 The Lanczos Iteration

The Lanczos algorithm made its debut in a 1952 paper by Cornelius Lanczos [22]. The

Lanczos algorithm constructs an orthonormal basis for the Krylov subspace Kn, and,

in the process, reduces A to a tridiagonal matrix via a series of orthogonal similarity

transformations. The algorithm is quite simple and can be implemented in a few lines

of MATLAB.

There are several approaches to deriving the Lanczos algorithm; each gives a useful

insight into the method. First, we can view the Lanczos algorithm as an approximate

reduction of A to tridiagonal form. Recall that an arbitrary matrix A can be reduced

to upper Hessenberg form (i.e., all entries below the first subdiagonal are zero) by

series of Householder transformations [31]. The net effect of these transformations is

to construct an orthogonal matrix Q and an upper Hessenberg matrix H such that

A = QHQ∗.

When A is a Hermitian matrix, the constructed Hessenberg matrix H reduces to

a tridiagonal matrix T . Ideally, we would much rather work with the simpler matrix

T than with the full matrix A. However, in typical applications the dimension m

of A is prohibitively large; we must, instead, content ourselves with an approximate

reduction.

Let qi denote the i-th column of Q and define the m × n matrix Qn to be the
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matrix whose columns are q1, q2, . . . , qn:

Qn =


q1 | q2 | . . . | qn


.

Let Tn be the n× n matrix formed from the first n rows and n columns of T :

Tn =



α1 β1

β1 α2 β2

β2
. . . . . .

. . . αn−1 βn−1

βn−1 αn


.

(In other contexts, Tn is known as a Jacobi matrix.)

A straightforward calculation now shows that

AQn = QnTn + βnqn+1e
T
n . (1.10)

By equating the n-th columns of each side of (1.10), we obtain the Lanczos recur-

rence:

Aqn = βn−1qn−1 + αnqn + βnqn+1. (1.11)

The Lanczos recurrence expresses qn+1 in terms of the previous n columns of Q. This

simple fact gives rise to the powerful Lanczos Iteration, which allows us to construct

the columns of Q iteratively [31]:
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1: β0 = 0, q0 = 0

2: b = arbitrary, q1 = b/ ‖b‖

3: for n = 1 to MaxIterations do

4: u = Aqn

5: αn = q∗nu

6: u = u− βn−1qn−1 − αnqn
7: βn = ‖u‖

8: qn+1 = u/βn

Algorithm 1.1: Lanczos Iteration

The Lanczos recurrence also tells us that the vectors q1, . . . qn form an orthonormal

basis for Kn(b;A): since q1 = b/ ‖b‖, equation (1.11) tells us that Ab = α1 ‖b‖ q1 +

β1 ‖b‖ q2, so Ab ∈ span{q1, q2}. Continuing in this fashion, we see that

Kn = span{b, Ab, . . . , An−1b} ⊆ span{q1, . . . , qn}.

The reverse containment also follows from similar reasoning (exchanging the roles of

the qi’s and the Ai−1b’s). Therefore, the spans of the two sets are identical. Since

both sets have the same dimension, they span the same space, namely, Kn. The

orthonormality of the qi’s is clear, since they are the columns of the orthogonal matrix

Q.

Stated slightly differently, the above argument tells us that the Lanczos iteration

performs a QR-factorization of the associated Krylov matrix Kn without explicitly

forming Kn or the upper triangular factor “R” [31].

The astute reader will notice that the Lanczos algorithm can also be thought of

as a modified version of the Gram-Schmidt algorithm applied to columns of Kn. The

underlying vector space is now the Krylov space Kn, and the resulting orthonormal

basis vectors are the columns qi of the matrix Qn. This basis is sometimes called

the Lanczos basis of Kn. In this basis, the orthogonal projection of A onto Kn is

precisely Tn [26, 31].
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Yet another characterization of the Lanczos algorithm comes from the Rayleigh-

Ritz procedure described in Subsection 1.1.1. If we apply the Rayleigh-Ritz algorithm

to the sequence of Krylov spaces K1,K2, . . . , we will obtain the Lanczos algorithm.

While for an arbitrary sequence of subspaces this might be a computationally expen-

sive undertaking, the procedure simplifies dramatically for a sequence of Krylov spaces

[26]: for each successive subspace, we already have an orthonormal basis {q1, . . . , qn−1}

of one less dimension, so we need only add one vector qn. This vector, however, has

already been computed during the previous iteration, and needs only to be normal-

ized. The matrix Rayleigh quotient Q∗nAQn at each step is merely the tridiagonal

matrix Tn; Tn, however, contains Tn−1 as its upper (n − 1) × (n − 1) submatrix, so

only the remaining two new elements must be computed. Finally, the computation

of the Ritz pairs (θi, yi) is greatly simplified by the tridiagonal structure of Tn.

When all the computations involved in the algorithm are performed in exact arith-

metic, the Lanczos algorithm will converge in at most m steps, since the span of the

columns of Qm has the same dimension as the ambient space Rm. It should be noted,

however, that this guarantee is not valid in the context of finite-precision arithmetic.

Indeed, the orthogonality condition Q∗mQm = Im can be completely destroyed by

rounding error. Much effort has been put into determining just how adversely finite-

precision arithmetic affects the Lanczos algorithm. It turns out that the algorithm

still obtains accurate approximations to the eigenpairs of A, but now obtains multiple

(though equally accurate) approximations to each eigenpair of A. This matter will

be explored in more detail in Chapter 5.

One of the primary uses of the Lanczos algorithm is to compute some of the

eigenvalues of A. Since the eigenvalues of A and of T are the same, we use the

Lanczos iteration to approximate A by Tn for some choice of n. The eigenvalues of

Tn are the Ritz values resulting from applying the Rayleigh-Ritz procedure to Kn,

and as we have seen these values give very good approximations to the eigenvalues of

A. Under certain conditions (namely, when the constructed Kn is A-invariant), the
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Lanczos algorithm will actually terminate early (i.e., βj = 0 for some j � n). In this

case each eigenvalue of the resulting Tj is an eigenvalue of A.

1.4 Conjugate Gradients

Another important application of the Lanczos iteration is the method of conjugate

gradients. The conjugate gradients algorithm is an iterative method for solving

linear systems of the form Ax = b, where A is a Hermitian positive-definite matrix.

It was introduced in a 1952 paper by Magnus Hestenes and Eduard Stiefel [16]. It

is widely used in numerical computations arising from discretized partial differential

equations and in finite element analysis, where the structure of the matrices involved

often permits O(m) computations of matrix-vector products.

Conjugate gradients, like the Lanczos iteration, finds its answers by iterating over

Krylov subspaces. For conjugate gradients, the task at hand is to find an approximate

solution to a linear system Ax = b that is optimal in the sense that the A-norm of

the error is minimized, where the A-inner product and A-norm are defined by

〈x, y〉A := 〈x,Ay〉 and ‖x‖A :=
√
〈x, x〉A.

(The fact that the A-norm is actually a norm is a simple consequence of A’s positive-

definiteness and Hermitianness.)

Thus if x∗ is the true solution of the system, then at its n-th step the conjugate

gradients algorithm will minimize the quantity ‖en‖A, where the error en at the n-th

step equals x∗ − xn.

Like the Lanczos algorithm, the conjugate gradients algorithm is amazingly simple

to program.
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1: x0 = 0, r0 = b, p0 = r0

2: for n = 1 to MaxIterations do

3: αn = 〈rn−1, rn−1〉/〈pn−1, pn−1〉A
4: xn = xn−1 + αnpn−1

5: rn = rn−1 − αnApn−1
6: βn = 〈rn, rn〉/〈rn−1, rn−1〉

7: pn = rn + βnpn−1

Algorithm 1.2: Conjugate Gradients

The method of conjugate gradients simultaneously constructs several different

bases for the Krylov subspace Kn generated by A and b: the approximate solutions

xn, the residuals rn, and the “search directions” pn all satisfy

Kn = span
{
b, Ab, . . . , An−1b

}
= span {x1, . . . , xn}

= span {p0, . . . , pn−1}

= span {r0, . . . , rn−1} .

(1.12)

Moreover, the n-th residual rn is orthogonal to all previous residuals, and the n-th

search direction pn is A-conjugate to all previous search directions, i.e., 〈pn, pj〉A = 0

for j < n. The proofs of these facts can be easily established using induction and the

conjugate gradients recurrences [31].

From the orthogonality properties of conjugate gradients, we may prove the fol-

lowing theorem [31].

Theorem 1.2 (Convergence of Conjugate Gradients). Suppose that the conjugate

gradients algorithm has not yet converged to a solution. (That is, suppose rn−1 6= 0.)

Then the n-th conjugate gradients approximation xn is the unique point of Kn that

minimizes the A-norm of the error en. Furthermore, conjugate gradients converges

monotonically, i.e., ‖en‖A ≤ ‖en−1‖A, and in at most m steps.
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Proof. From (1.12) it is clear that xn ∈ Kn. To see that xn is the unique minimizer

of ‖en‖A, let e = x∗ − x for x ∈ Kn and calculate

‖e‖2A = 〈e, Ae〉 = 〈x∗ − x, b− Ax〉 = 〈x∗ − xn + xn − x, b− Axn + Axn − Ax〉

= 〈en + (xn − x), rn + A(xn − x)〉

= 〈en, rn〉+ 〈rn, xn − x〉+ 〈en, A(xn − x)〉+ 〈xn − x,A(xn − x)〉

= ‖en‖2A + 2〈rn, xn − x〉+ ‖xn − x‖2A = ‖en‖2A + ‖xn − x‖2A,

where we have used the facts that rn = Aen and that rn is orthogonal to Kn (by

(1.12)). Since A is positive definite, the last expression is clearly minimized iff x = xn.

Weak monotonicity of convergence is a consequence of the obvious inclusion Kn ⊂

Kn+1. The bound on the number of iterations needed for convergence follows from

the fact that Km = Rm.

It should be noted that the bound on the number of iterations needed for con-

vergence does not account for the effects of finite-precision arithmetic. The analysis

of the behavior of conjugate gradients in the presence of finite-precision arithmetic is

quite complicated; the interested reader should see the text of Greenbaum [14] for a

gentle introduction, or the article [13] by the same author for the gory details.

The rate of convergence of conjugate gradients (in exact arithmetic) is directly

related to the width and location of the spectrum of A [31]. Conjugate gradients is

well-suited to matrices having spectra that are either well-separated from the origin

and/or grouped in small clusters. This is due to the following theorem that bounds the

relative error en/e0 of the computation by a minimax criterion involving polynomials

p of degree ≤ n with p(0) = 1 [31].

Theorem 1.3. Let Pn be the set of all polynomials p of degree ≤ n with p(0) = 1. If

e0 is the initial error in the conjugate gradients computation and en is the error at the

n-th step, then, if the algorithm has not already converged to a solution, the relative
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error en/e0 satisfies
‖en‖A
‖e0‖A

≤ inf
p∈Pn

max
α∈σ(A)

|p(α)|. (1.13)

Loosely speaking, if a matrix has eigenvalues near 0, there is no hope of finding

a polynomial that is small at those eigenvalues (because of the condition p(0) = 1).

Likewise, if a matrix has m eigenvalues that are very far apart, it will be difficult to

construct a polynomial of degree n < m that is small at all the eigenvalues. This last

point can be clarified further with the following theorem [31].

Theorem 1.4. Assume the eigenvalues of A are ordered such that α1 ≤ · · · ≤ αn.

Let κ = αn/α1 denote the 2-norm condition number of A. Then the relative error

en/e0 satisfies

‖en‖A
‖e0‖A

≤ 2(√
κ+1√
κ−1

)n
+
(√

κ+1√
κ−1

)−n ≤ 2

(√
κ− 1√
κ+ 1

)n
. (1.14)

Proof Sketch. By Theorem 1.3 it is sufficient to find a polynomial p of degree ≤ n with

p(0) = 1 whose maximum absolute value on [α1, αn] is precisely the middle quantity

in the inequality above. Thus we seek a polynomial p ∈ Pn such that

max
α∈[α1,αn]

|p(α)| = 2(√
κ+1√
κ−1

)n
+
(√

κ+1√
κ−1

)−n .
As we will see in the next chapter, the polynomial that minimizes the expression on

the left is precisely the scaled and translated Chebyshev polynomial

Tn (γ − 2x/(αn − α1))

Tn(γ)
, where γ :=

αn + α1

αn − α1

=
κ+ 1

κ− 1
. (1.15)

The numerator of (1.15) is clearly bounded above by 1 in absolute value for x ∈

[α1, αn]. Furthermore, using the three-term recurrence for the Chebyshev polynomials

(see the next chapter), we may derive the recurrence

Tn(γ) = 2γTn−1(γ)− Tn−2(γ), n ≥ 2.
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This is now a linear second-order constant-coefficient recurrence for Tn(γ). By the

standard substitution Tn(γ) = rn, we find that

Tn(γ) = s
(
γ +

√
γ2 − 1

)n
+ t
(
γ −

√
γ2 − 1

)n
. (1.16)

From the conditions that

1 = T0(γ) = s+ t

2γ2 − 1 = T2(γ) = 2(s+ t)γ2 + 2(s− t)
√
γ2 − 1− (s+ t),

we find that s = t = 1/2. Manipulating (1.16) gives us the desired result, namely

that

Tn(γ) =
1

2

[(√
κ+ 1√
κ− 1

)n
+

(√
κ+ 1√
κ− 1

)−n]
.

Since the fraction in parentheses is asymptotic to 1− 2/
√
κ, we see that a “wide”

spectrum could cause conjugate gradients to converge slowly. (Although the above

theorem is no guarantee of that, as it only gives an upper bound on the relative error

[12].)

The convergence of conjugate gradients for matrices with “troublesome” spectra

as discussed above can sometimes be accelerated through the use of a preconditioner;

see [31] for a more detailed discussion of the situations under which this technique is

helpful.
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Chapter 2

ORTHOGONAL POLYNOMIALS

Orthogonal polynomials play an important role in mathematics and in physics,

often as solutions to differential equations or as eigenfunctions of differential opera-

tors. In this chapter, we will review the fundamentals of the theory of orthogonal

polynomials. We will also examine two of the more frequently encountered families of

orthogonal polynomials, the Legendre polynomials and the Chebyshev1 polynomials.

2.1 General Theory

Given an inner product space V over a field F, we may define a family of orthogonal

polynomials {pn(x)}∞n=0 by the conditions

deg pn = n (2.1)

〈pn, xm〉 = 0, for 0 ≤ m ≤ n− 1. (2.2)

These conditions, however, only determine the polynomial pn up to a multiplicative

constant. In order to determine pn uniquely, it is common to impose one of the

following additional conditions:

(i). pn(1) = 1;

(ii). pn(x) is a monic polynomial;

(iii). ‖pn‖ = 1, where ‖·‖ := 〈·, ·〉1/2.

1The reader should be advised that the spelling of the name “Chebyshev” is not universally agreed
upon. Chebyshev was a Russian mathematician, and there is no canonical way of transliterating
the Cyrillic alphabet to the Latin one.
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One method of computing a family of orthogonal polynomials is to use this defi-

nition to set up a system of linear equations for the coefficients of pn. For example,

to compute p2 we assume that p2(x) = ax2 + bx+ c for some a, b, c ∈ F and use (2.2)

to obtain the equations

〈ax2 + bx+ c, 1〉 = 0 and 〈ax2 + bx+ c, x〉 = 0.

The third equation comes from our choice of normalization condition.

Another way to construct the polynomials pn satisfying the above definition is to

perform the Gram-Schmidt orthogonalization procedure on the monomial basis

1, x, x2, x3, . . . (2.3)

Again, this process only defines the polynomials up to a multiplicative constant, and

one of the conditions (i)-(iii) must be imposed for uniqueness.

These two procedures, however, are quite tedious and are not the most efficient

means of calculating orthogonal polynomials. A better method can be obtained by

taking advantage of the fact that the polynomials constructed previous to pn are

already mutually orthogonal. For convenience of presentation, let us assume that the

vector space in question is the space P ([−1, 1]) of all polynomials in one real variable,

defined on the interval [−1, 1]. The ambient field will be C, the field of complex

numbers.

First, notice that a family of orthogonal polynomials (properly normalized) forms

a basis for P ([−1, 1]): each pn is a finite linear combination of elements from the

monomial basis (2.3). Therefore, any polynomial defined on [−1, 1] can be expressed

as a finite linear combination of pn’s. In particular, there exist scalars c
(n)
k ∈ C

(depending on n) such that

xpn(x) =
n+1∑
k=0

c
(n)
k pk(x), n ≥ 1. (2.4)
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The coefficients are easily seen to be given by the formula

c
(n)
k =

〈xpk(x), pk(x)〉
〈pk, pk〉

.

Now consider 〈xpn(x), pj(x)〉, for 0 ≤ j ≤ n+ 1. Since x is a real variable, we have

〈xpn(x), pj(x)〉 = 〈pn(x), xpj(x)〉.

It therefore follows from the condition (2.2) that

〈xpn(x), pj(x)〉 = 0, for 0 ≤ j ≤ n− 2.

Hence the sum in (2.4) reduces to only three terms

xpn(x) = c
(n)
n+1pn+1(x) + c(n)n pn(x) + c

(n)
n−1pn−1(x). (2.5)

Upon rearranging (2.5), we obtain the three-term recurrence [4]

pn+1(x) =

(
x− c(n)n

c
(n)
n+1

)
pn(x)−

(
c
(n)
n−1

c
(n)
n+1

)
pn−1(x)

= (Anx+Bn) pn(x)− Cnpn−1(x), n ≥ 1.

It is customary to define p−1(x) ≡ 0, so that the above recurrence will also hold for

n = 0.

The coefficients An, Bn and Cn are given explicitly by the formulae

An =
〈pn+1(x), pn+1(x)〉
〈xpn(x), pn+1(x)〉

Bn = − 〈xpn(x), pn(x)〉
〈xpn(x), pn+1(x)〉

〈pn+1(x), pn+1(x)〉
〈pn(x), pn(x)〉

Cn =
〈xpn(x), pn−1(x)〉
〈xpn(x), pn+1(x)〉

〈pn+1(x), pn+1(x)〉
〈pn−1(x), pn−1(x)〉

.

From these formulae it is obvious that the coefficients of the recurrence are all real.

It is also true that An and Cn are positive [30]; the exact proof of this depends on the

normalization condition in force.
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These formulae, as written, are troublesome, for they involve the unknown polyno-

mial pn+1. Fortunately, this can be remedied; the exact method again depends on the

normalization condition used. For example, suppose we assume that the polynomials

are monic; then by degree considerations in the recurrence we must have An = 1 for

all n. Similar simplifications will occur for the other coefficients.

We summarize the above results in the following theorem.

Theorem 2.1. Given a family of orthogonal polynomials {pn(x)}∞n=0 defined on the

interval [−1, 1], there exist real constants An, Bn and Cn, with An and Cn positive,

such that

pn+1(x) = (Anx+Bn) pn(x)− Cnpn−1(x), n ≥ 0, (2.6)

where we define p−1(x) ≡ 0.

The three-term recurrence gives us a very efficient means of constructing the or-

thogonal polynomials: we only need to compute at most 4 new quantities at each

stage, namely 〈xpn(x), pk(x)〉, k = n− 1, n, n+ 1, and 〈pn+1(x), pn+1(x)〉. For certain

normalizations the computations simplify even further.

The three-term recurrence is fundamental to the theory of orthogonal polynomials.

Many important results in the field rest upon this single identity. As we shall see later

in this chapter, the existence of a three-term recurrence among a family of polynomials

forces them to be an orthogonal family. We pause now, however, to reinforce what we

have discussed to this point with a more detailed look at some well-known families of

orthogonal polynomials.

2.2 Examples of Orthogonal Polynomials

2.2.1 The Legendre Polynomials

The Legendre polynomials Pn(x) are a family of orthogonal polynomials defined on

[−1, 1] and orthogonal with respect to the standard L2 inner product. They are
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typically normalized by the condition Pn(1) = 1. With this normalization they satisfy

the three-term recurrence2

Pn+1(x) =

(
2n+ 1

n+ 1

)
xPn(x)−

(
n

n+ 1

)
Pn−1(x), n ≥ 1 (2.7)

From (2.7) we may calculate the first few Legendre polynomials:

P0(x) = 1 P1(x) = x

P2(x) =
3

2
x2 − 1

2
P3(x) =

5

2
x3 − 3

2
x

The Legendre polynomials also satisfy a differential equation [20]

(1− x2)y′′ − 2xy′ + n(n+ 1)y = 0 (2.8)

and as such appear frequently in physics and engineering. For example, in the solution

of Laplace’s equation ∆u = 0 in the unit ball of R3, the above differential equation

governs the longitudinal component of the solution [17]. (That is, if we express the

Laplace operator in spherical coordinates (r, θ, φ) and use the method of separation

of variables to solve Laplace’s equation, the resulting equation in the θ variable will

resemble (2.8).)

2.2.2 The Chebyshev Polynomials

The Chebyshev polynomials3 occur frequently in numerical analysis due to the fact

that they satisfy a minimax equation on [−1, 1] [26, 27]. They are most commonly

defined by the relation

Tn(x) = cos(n arccosx), −1 ≤ x ≤ 1, n ≥ 0. (2.10)

2This recurrence is sometimes called Bonnet’s Recursion.

3Technically, these are the Chebyshev polynomials of the first kind. There exist Chebyshev
polynomials of the second kind, given by the formulas

Un(cos θ) =
sin(n+ 1)θ

sin θ
, 0 ≤ θ ≤ π (2.9)

but they will not be needed here.
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The Chebyshev polynomials are also orthogonal on the interval [−1, 1] but with re-

spect to the weight function w(x) = (1 − x2)1/2. As one may easily verify using

trigonometric identities, the Chebyshev polynomials satisfy the recurrence

Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1. (2.11)

Using this recurrence we may calculate the first few Chebyshev polynomials:

T0(x) = 1 T1(x) = x

T2(x) = 2x2 − 1 T3(x) = 4x3 − 3x

Notice that if we make the change of variables x = cos θ (which is valid, since −1 ≤

x ≤ 1, then we have Tn(cos θ) = cosnθ and

1 = T0(cos θ) = 1

cos θ = T1(cos θ) = cos θ

cos 2θ = T2(cos θ) = 2 cos2 θ − 1

cos 3θ = T3(cos θ) = 4 cos3 θ − 3 cos θ,

which are precisely the standard multiple angle formulas for cosine. Thus we may

also compute the Chebyshev polynomials by examining the real part of einθ.

From the recurrence (2.11) we may also ascertain that the leading coefficient of

Tn (when n ≥ 1) is 2n−1: this is clearly true for n = 1, and by induction, we see that

the leading coefficient of Tn+1 is twice that of Tn, so the claim follows. Consequently,

the polynomial 21−nTn(x) is monic. This particular polynomial has some very nice

extremal properties, one of which is the following: of all degree n monic polynomials

on [−1, 1], the monic Chebyshev polynomial 21−nTn(x) has the smallest extrema. The

following theorem makes this statement more precise.

Theorem 2.2. Let P n be the set of all monic polynomials of degree n. The monic

Chebyshev polynomial 21−nTn(x) satisfies the following minimax criterion.

Tn(x)

2n−1
= min

p∈Pn
max
[−1,1]

|p(x)|, (2.12)
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Note that by rescaling we can transfer this property to any closed subinterval of

the real line.

Proof of Theorem 2.2. [27] Suppose to the contrary that there exists p ∈ P n such

that

max
[−1,1]

|p(x)| < max
[−1,1]

|Tn(x)|
2n−1

.

From the definition of Tn we have

max
[−1,1]

|Tn(x)| = max
[0,2π]
|Tn(cos(θ))| = max

[0,2π]
| cos(nθ)| = 1.

Furthermore, the extrema of Tn(x) are clearly attained at the points

ξm = cos(m
π

n
), m = 0, . . . , n,

and at these points we have Tn(ξm) = (−1)m2n−1.

Since p 6= 21−nTn, the residual q = 21−nTn−p is not the zero polynomial. Consider

the values of q at the extrema of Tn: let the integers s and t be such that 0 ≤ s ≤ t ≤ n

and

q(ξ0) = q(ξ1) = · · · = q(ξs−1) = 0

q(ξs) 6= 0

q(ξt) 6= 0

q(ξt+1) = · · · = q(ξn) = 0.

Since q is not identically 0, we have s < n and t > 0.

Suppose now that

q(ξs+1) = · · · = q(ξs+j−1) = 0

for some j with q(ξs+j) 6= 0, so that q has at least j− 1 zeros in [ξs, ξs+j]. Notice that

for any m, if q(ξm) 6= 0, then sgn(q(ξm)) = (−1)m by our definition of q. Therefore,

if j is even, q(ξs) and q(ξs+j) have the same sign, so q has an even number of zeros

in [ξs, ξs+j] (where we have counted zeros according to their multiplicity). Likewise,
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if j is odd, q(ξs) and q(ξs+j) are of opposite sign, so q has an odd number of roots in

[ξs, ξs+j].

It follows that q has at least t− s zeros in [ξs, ξt]. But by hypothesis, q has s zeros

in [ξ0, ξs−1] and n− t zeros in [ξt+1, ξn], so q has at least s+ (t− s) + (n− t) = n zeros.

Since deg q = n − 1, q ≡ 0, a contradiction. Hence no polynomial in P n has smaller

extrema than 21−nTn(x).

2.3 Favard’s Theorem

We have seen how a family of orthogonal polynomials gives rise to a three-term

recurrence. Perhaps surprisingly, the converse is also true: a three-term recurrence

similar to (2.6) gives rise to orthogonal polynomials. This fact is commonly known

as Favard’s Theorem [3, 7]:

Theorem 2.3 (Favard). Let {pn(x)} be a family of polynomials defined on [−1, 1]

and satisfying a three-term recurrence of the form

pn+1(x) = (Anx+Bn)pn(x)− Cnpn−1(x), n ≥ 1 (2.13)

where the coefficients An, Bn, and Cn are real with An and Cn positive. Then there

exists an inner product on C([−1, 1]) with respect to which {pn} is a family of orthog-

onal polynomials. Furthermore, this inner product is given by a Riemann-Stieltjes

integral of the form

〈f, g〉 =

∫ 1

−1
f(x)g(x) dw(x), (2.14)

where w(x) is a nonnegative, increasing, right-continuous function on [−1, 1].

In order to simplify the proof of Favard’s Theorem we now introduce a few new

concepts. Recall that P ([−1, 1]) denotes the vector space of polynomials defined on

[−1, 1].
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Given a sequence {µn}∞n=0 of complex numbers, we may define a linear functional

L on P ([−1, 1]) by setting

L(xn) = µn, n = 0, 1, . . . (2.15)

and extending linearly to the rest of the space. We refer to L as a moment func-

tional [3].

The term “moment” comes from the fact that under certain circumstances, L can

be realized as an integration against a suitable weight function. In such a situation we

recognize (2.15) as the n-th moment of this weight function. The following theorem

details one set of circumstances under which this is true [3].

Theorem 2.4 (Representation Theorem). Let L be a moment functional defined

on P ([−1, 1]). Suppose that L is positive definite, i.e., that L(p(x)) > 0 whenever

p(x) 6= 0 and p(x) ≥ 0 for all x ∈ [−1, 1]. Then there exists a nonnegative, increasing,

right-continuous function w(x) such that

L(p(x)) =

∫ 1

−1
p(x) dw(x) (2.16)

for all polynomials p(x) ∈ P ([−1, 1]).

Proof Sketch. An easy proof of this theorem can be given using basic functional

analysis. From the Stone-Weierstrass theorem we know that P ([−1, 1]) is dense in

C([−1, 1]). Therefore (using the Hahn-Banach theorem) we may extend L to a linear

functional L on C([−1, 1]). We claim that this extended functional is positive.

To see this, note that any nonnegative continuous function f on [−1, 1] is the

uniform limit of a sequence of polynomials pn ∈ P ([−1, 1]), so clearly f is the pointwise

limit of the pn’s. Since f(x0) ≥ 0 at every x0 ∈ [−1, 1], there exists an integer N0

(which depends on x0) such that pn(x0) ≥ 0 for n ≥ N0. By continuity, we know that

pn(x0) ≥ 0 in a neighborhood of x0. Since the interval [−1, 1] is compact, we can

cover it by finitely many such neighborhoods Uj, in each of which we have

pn(x) ≥ 0, x ∈ Uj, n ≥ Nj.
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Thus whenever n ≥ maxj Nj we have pn(x) ≥ 0 for all x ∈ [−1, 1]. Hence f is

actually a uniform limit of nonnegative polynomials; by our assumption of positive

definiteness, L is nonnegative for such polynomials, so L(f) is nonnegative.

The Riesz Representation theorem (see [8]) now allows us to conclude that L is

given by a Lebesgue integral with respect to a (unique) Radon measure µ. Since [−1, 1]

is compact and µ is finite on compact sets, however, we know that µ must be finite on

all Borel subsets of [−1, 1]. Therefore, there exists a nonnegative, increasing, right-

continuous function w(x) such that dµ = dw(x). Since all integrands f in question

are continuous, the Lebesgue integral agrees with the Riemann-Stieltjes integral, and

we have

L(p(x)) =

∫ 1

−1
p(x) dw(x)

for all polynomials p(x) ∈ P ([−1, 1]), as claimed.

For a proof of Theorem 2.4 that does not use functional analysis, see [3].

We now possess the proper machinery to prove Favard’s Theorem.

Proof of Favard’s Theorem. The essence of the proof is this: we use (2.13) to define

a suitable moment functional, then apply the lemma above to get our result. To wit,

define a moment functional L by setting

L(1) =
C1

A1

L(pn(x)) = 0, n ≥ 1.

and extending linearly. We claim that

L(xkpn(x)) = 0, 0 ≤ k ≤ n, n ≥ 1. (2.17)

The k = 0 case is clear from our construction of L. Write the given recurrence (2.13)

in the form

Anxpn(x) = pn+1(x)−Bnpn(x) + Cnpn−1(x). (2.18)
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If we apply the moment functional L to both sides, we obtain L(xpn(x)) = 0 for all

n ≥ 1. Multiplying both sides of (2.18) by xk−1 and inducting on k, we see that

L(xkpn(x)) = 0 holds for n fixed and 0 ≤ k < n. Since we defined L(pn(x)) to be

zero for n ≥ 1, the claim will hold for any n ≥ 1.

Next, from (2.13) it follows that

Anx
npn(x) = xn−1pn+1(x)−Bnx

n−1pn(x) + Cnx
n−1pn−1(x),

so from (2.17) we have

L(xnpn(x)) =
Cn
An
L(xn−1pn−1(x)), n ≥ 1.

Given these observations we readily conclude that L(pm(x)pn(x)) = 0 for m 6= n,

and

L(pn(x)pn(x)) = kn

(
CnCn−1 · · ·C1

AnAn−1 · · ·A1

)
, (2.19)

where kn is the leading coefficient of pn. A simple induction shows that kn is positive

(since An is), and the An’s and Cn were positive by hypothesis, so the right hand

side of (2.19) is positive. It follows that L is positive-definite. From Theorem 2.4,

we may conclude that there exists a nonnegative increasing right-continuous function

w(x) such that

L(f) =

∫ 1

−1
f(x) dw(x).

It is clear that 〈f, g〉 := L(fḡ) will define a valid inner product. The polynomials pn

are orthogonal with respect to this inner product by construction.

Favard’s Theorem will be of great use to us in Chapter 5, where we will investigate

the effects of finite-precision arithmetic on the Lanczos algorithm.
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Chapter 3

THE LANCZOS ITERATION AND ORTHOGONAL

POLYNOMIALS

We now examine the Lanczos recurrence (1.11) presented in Chapter 2 in more de-

tail. Notice that it is a three-term recurrence, similar to those we discussed in Chapter

3. Based upon our discussion of orthogonal polynomials in the previous chapter, the

reader might expect that there are some orthogonal polynomials lurking about. This

is indeed the case, as we will now demonstrate. We assume here that all computations

are performed in exact arithmetic; the case of finite-precision computations will be

covered in the next chapter.

3.1 The Lanczos Iteration Generates Orthogonal Polynomials

Let us first rearrange the Lanczos recurrence (1.11) to a more convenient form by

moving all terms involving qn+1 to one side of the equality:

βnqn+1 = Aqn − αnqn − βn−1qn−1. (3.1)

From the definition of Lanczos Algorithm (Algorithm 1.1), we have the following

explicit formulae for the coefficients αn and βn:

αn = 〈Aqn − βn−1qn−1, qn〉 and βn = ‖Aqn − αnqn − βn−1qn−1‖ .

To simplify our analysis, let us replace A by its eigendecomposition UΛU∗, where

Λ is a diagonal matrix of eigenvalues and U has the corresponding eigenvectors of A

as its columns. Define q̂n = U∗qn; then since U is a unitary matrix (and therefore
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respects inner products), (3.1) becomes [14]

βnq̂n+1 = Λq̂n − αnq̂n − βn−1q̂n−1, (3.2)

with

αn = 〈Λq̂n − βn−1q̂n−1, q̂n〉 and βn = ‖Λq̂n − αnq̂n − βn−1q̂n−1‖ .

From (3.2) we may read off the recurrence satisfied by the j-th component of q̂n+1:

βn(q̂n+1)j = λj(q̂n)j − αn(q̂n)j − βn−1(q̂n−1)j. (3.3)

The “seeds” for the Lanczos iteration were the vectors q̂0 = 0 and q̂1 = U∗(b/ ‖b‖)

(where b was an arbitrary nonzero vector). It is easy to see that if we repeatedly back-

substitute into (3.3) the corresponding recurrences for (q̂n−1)j and (q̂n−2)j, we can

express each of the Lanczos basis vectors q̂n in terms of q̂0 and q̂1. (More precisely, the

solution q̂n to the recurrence (3.2) is uniquely determined by q̂0 and q̂1: our recurrence

is a variable-coefficient, second-order difference equation, and it is a standard fact that

such an equation will have a unique solution for each choice of initial values q̂0 and

q̂1.) In doing so, we will discover that (q̂n+1)j is equal to an n-th degree polynomial

φn(x) evaluated at the eigenvalue λj, times the initial value (q̂1)j [14]. We formalize

this assertion in the following lemma.

Lemma 3.1. If (q̂n+1)j is the j-th component of the (n+ 1)-th Lanczos basis vector,

then there exists a polynomial φn(x) such that deg φn = n and

(q̂n+1)j = φn(λj)(q̂1)j, n ≥ 1, (3.4)

where λj is the j-th eigenvalue of A and q̂1 is the initial Lanczos basis vector.

Proof. Consider the n = 1 case: from (3.3) we have

(q̂2)j =
1

β1
(λj(q̂1)j − α1(q̂1)j − β0(q̂0)j) =

1

β1
(λj − α1) (q̂1)j := φ1(λj)(q̂1)j.
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Similarly, for n = 2 we have

(q̂3)j =
1

β2
(λj(q̂2)j − α2(q̂2)j − β1(q̂1)j) =

1

β2

(
1

β1
(λj − α2) (λj − α1)− β1

)
(q̂1)j

:= φ2(λj)(q̂1)j

The general case follows by induction on n:

(q̂n+1)j =
1

βn
(λj(q̂n)j − αn(q̂n)j − βn−1(q̂n−1)j)

=
1

βn
((λj − αn)φn−1(λj)− βn−1φn−2(λj)) (q̂1)j

:= φn(λj)(q̂1)j.

Since deg φn−1(x) = n− 1, we have deg φn(x) = n.

It now follows immediately that the φn’s satisfy a three-term recurrence: simply

substitute (3.4) into (3.3) to obtain

φ−1(λj) ≡ 0

φ0(λj) ≡ 1

βnφn(λj) = (λj − αn)φn−1(λj)− βn−1φn−2(λj), n ≥ 1, (3.5)

for j = 1, . . . , n. This recurrence is only valid, however, on the spectrum of A, which

is a discrete set. The φn’s are not necessarily orthogonal with respect to the L2 inner

product we used in the previous chapter, since that inner product was defined on

an interval of the real line. One might wonder if perhaps there is some other inner

product with respect to which the φn’s are orthogonal. The answer, as it turns out,

is a resounding yes.

Let us define an inner product on the vector space of all polynomials of degree at

most m− 1 as follows [14].

〈f(x), g(x)〉w =
m∑
j=1

f(λj)g(λj) |(q̂1)j|2 (3.6)

This is clearly an inner product, for
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• it is linear in each “slot”;

• it is conjugate symmetric (i.e. 〈f, g〉 = 〈g, f〉); and

• 〈f, f〉 > 0 for all f 6= 0 (since q̂1 6= 0 and deg f < m).

It is with respect to this w-inner product that the φn’s are orthogonal [14].

Theorem 3.1. The polynomials φn defined above are orthogonal with respect to the

inner product 〈·, ·〉w defined in (3.6).

Proof.

〈φs, φt〉w =
m∑
j=1

φs(λj)φt(λj)|(q̂1)j|2

=
m∑
j=1

[φs(λj)(q̂1)j]
[
φt(λj)(q̂1)j

]
= 〈qs+1, qt+1〉 = δst,

since the Lanczos vectors are orthonormal.

We can also rewrite αn and βn in terms of the w-inner product [14]:

αn = 〈Λq̂n − βn−1q̂n−1, q̂n〉

=
m∑
j=1

(Λq̂n − βn−1q̂n−1)j (q̂n)j =
m∑
j=1

λj|(q̂n)j|2 − βn−1 (q̂n−1)j (q̂n)j

=
m∑
j=1

λj [φn−1(λj)(q̂1)j]
2 − βn−1 [φn−2(λj)(q̂1)j]

[
φn−1(λj)(q̂1)j

]
=

m∑
j=1

[
λj |φn−1(λj)|2 − βn−1φn−2(λi)φn−1(λj)

]
|(q̂1)j|2

= 〈xφn−1(x)− βn−1φn−2(x), φn−1(x)〉w. (3.7)
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Likewise,

βn = ‖Λq̂n − αnq̂n − βn−1q̂n−1‖

=

[
m∑
j=1

|λj(q̂n)j − αn(q̂n)j − βn−1(q̂n−1)j|2
]1/2

=

[
m∑
j=1

|λjφn−1(λj)− αnφn−1(λj)− βn−1φn−2(λj)|2 |(q̂1)j|2
]1/2

= ‖xφn−1(x)− αnφn−1(x)− βn−1φn−2(x)‖w , (3.8)

where ‖ · ‖w = 〈·, ·〉1/2w .

To summarize, we have shown that the Lanczos iteration, in exact arithmetic,

produces a family {φn} of polynomials that are orthogonal with respect to the w-

inner product defined in (3.6). Moreover, these polynomials satisfy the three-term

recurrence given below

φ−1(x) ≡ 0

φ0(x) ≡ 1

βnφn(x) = (x− αn)φn−1(x)− βn−1φn−2(x), n ≥ 1. (3.9)

3.2 Eigenvalues of Jacobi Matrices

Let us now consider the ramifications of these developments upon the Jacobi matrix

Tn constructed by the Lanczos algorithm. Recall that Tn is defined by

Tn = Q∗nAQn.

Its entries are given by tik = q∗iAqk. If we once again make use of the eigendecompo-

sition of A, then we have

Tn = Q̂∗nΛQ̂n,
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where Q̂n = UQn. The entries of Tn are now given by

tik = q̂∗i Λq̂k =
m∑
j=1

λj(q̂i)j(q̂k)j

=
m∑
j=1

λjφi−1(λj)φk−1(λj)|(q̂1)j|2

= 〈xφk−1(x), φi−1(x)〉w (3.10)

(which agrees with equations (3.7) and (3.8)).

Often, we use the Lanczos algorithm as a stepping stone on our path towards the

eigenvalues of A. Clearly, it is sufficient to find the eigenvalues of T , which is usually

easier than finding the eigenvalues of A directly since T is tridiagonal. In fact, we

know exactly what the eigenvalues of T are: they are the zeros of the w-orthogonal

polynomials φn(x).

Theorem 3.2. The characteristic polynomial of Tn is a multiple of φn(x). More

precisely,

det(xI − Tn) = (β1β2 . . . βn)φn(x). (3.11)

Proof. We proceed by induction on n. We have

det(xI − Tn) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− α1 −β1
−β1 x− α2 −β2

. . . . . . . . .

−βn−2 x− αn−1 −βn−1
−βn−1 x− αn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



34

Expand the determinant by minors of the last column; then we have

det(xI − Tn) = βn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x− α1 −β1
−β1 x− α2 −β2

. . . . . . . . .

−βn−3 x− αn−2 −βn−2
0 −βn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+ (x− αn) det(xI − Tn−1).

Now expand the first determinant by minors of the last row to obtain

det(xI − Tn) = (x− αn) det(xI − Tn−1)− β2
n−1 det(xI − Tn−2)

which is a three-term recurrence for the n-th degree polynomial det(xI − Tn). Sub-

stitute the inductive hypothesis into the right-hand side to obtain

det(xI − Tn) = (β1 . . . βn−1) (x− αn)φn−1(x)− (β1 . . . βn−2) β
2
n−1φn−2(x)

= (β1 . . . βn−1) [(x− αn)φn−1(x)− βn−1φn−2(x)]

= (β1 . . . βn−1) [βnφn(x)] ,

by the recurrence formula for the φn’s (equation (3.1)).

Corollary 3.2.1. The eigenvalues of Tn are precisely the zeros of the φn’s.

Proof. By Theorem 3.2, the characteristic polynomial of Tn has the same roots as

φn.

In practice, this equivalence is used in the reverse manner: we may calculate the

zeros of orthogonal polynomials by finding the eigenvalues of their associated Jacobi

matrices. Given a family of orthogonal polynomials, we can use the coefficients of

their three-term recurrence to construct a sequence of tridiagonal matrices Tn, just as
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we did here. The zeros of the polynomials in this family are simply the eigenvalues

of the Tn.

This is an extremely valuable piece of information from the standpoint of numerical

analysis: the direct computation of the zeros of polynomials is numerically unstable

while the computation of the eigenvalues of an m×m Hermitian tridiagonal matrix is a

well-conditioned problem that can be solved in O(m2) time.1 The zeros of orthogonal

polynomials are of great importance in numerical integration, as they are the nodes

for Gauss-Christoffel quadrature formulas. (A more detailed explanation of this can

be found in Appendix A.) The Lanczos algorithm thus provides a computationally

stable method of computing the nodes required for Gaussian quadrature.

1In fact, Dario Bini and Victor Pan [1] developed a method to solve this problem in O(m logm)
time. More recently, S Eisenstat and Ming Gu [6] have constructed an O(m logm) algorithm for
solving this problem based on the Fast Multipole Method of Greengard and Rokhlin [15, 28].
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Chapter 4

THE LANCZOS ALGORITHM IN FINITE-PRECISION

ARITHMETIC

Our discussion of the Lanczos algorithm in the previous chapters assumed the use

of exact arithmetic. On a computer, however, we often must settle for finite-precision

computations, i.e., computations in which quantities are only known to within cer-

tain tolerances. It is therefore of interest to know how finite-precision arithmetic

affects the Lanczos algorithm. Will the computed basis vectors qn still be orthogo-

nal? Will the constructed tridiagonal matrices Tn still give accurate approximations

to the eigenvalues of A? Will the algorithm even converge, or will it grind on blindly,

forever spewing forth meaningless quantities?

The complications introduced by working in inexact arithmetic were known to

Lanczos when he presented his algorithm in the early 1950’s. It took almost two

decades before the first rigorous analysis of the effects of finite-precision arithmetic

appeared. The 1971 Ph.D. thesis of Chris Paige [23] was the first major examination

of the situation, and is still considered one of the most authoritative treatments of

the matter.

A precise understanding of the behavior of the Lanczos algorithm on a computer

requires a deeper analysis of the Lanczos iteration. To simplify our analysis, we

consider the following implementation of the Lanczos algorithm.
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1: Let q1 be a given vector of unit norm.

2: u1 = Aq1

3: for n = 1 to MaxIterations do

4: αn = q∗nun

5: wn = un − αnqn
6: βn+1 = +

√
w∗nwn

7: if βn+1 = 0 then

8: stop

9: qn+1 = wn/βn+1

10: un+1 = Aqn+1 − βn+1qn

Algorithm 4.1: Lanczos Iteration (variant)

It should be clear that Algorithm 4.1 will produce the same results as Algorithm

1.1 in exact arithmetic.

From a cursory glance, the reader might conclude that all hope of a convergent

algorithm is lost in finite-precision, for the orthogonality of the generated basis vec-

tors relies upon an inductive calculation, namely, a recurrence. In finite-precision

arithmetic, rounding errors will accumulate during the computation of the recurrence

and destroy orthogonality. With no guarantee of orthogonality, the answers produced

by the Lanczos iteration are seemingly meaningless.

In fact, however, the outlook is far from bleak. As we will see in this chapter,

the Lanczos algorithm in inexact arithmetic will still generate Ritz pairs that are

very good approximations to the eigenpairs of A despite the loss of orthogonality.

Moreover, we will determine precisely when orthogonality is lost, and what effect

this loss has upon the eigenpairs of A. We will also see how the Lanczos algorithm

still generates orthogonal polynomials, although now the weight function will look

slightly different. Finally, we will comment briefly on the eerie phenomenon of “ghost

eigenvalues” that is often observed in finite-precision implementations of the Lanczos
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algorithm.

Our analysis of Lanczos algorithm will require a few simple facts about finite-

precision arithmetic. In order to streamline our presentation, we only state them

here. A more detailed discussion of these facts can be found in Appendix B. In these

two propositions and for the remainder of this chapter, fl(x) will denote the floating

point representation of x. Also, we will neglect terms in ε2 and higher, as the effect

of these terms upon our analysis is negligible.

Proposition 4.1. Suppose that A is an m×m matrix, x and y are m× 1 vectors,

and c is a scalar. Let ν denote the maximum number of non-zero elements in any

row of A. Finally, assume that the quantities

σ := ‖A‖ and βσ := ‖|A|‖ , (4.1)

where |A| = |aij|, are known a priori. Then the following statements hold in finite-

precision arithmetic:

fl (fl(x)− fl(c) fl(y)) = (x− cy) + δz, where ‖δz‖ ≤ (‖x‖+ 2|c| ‖y‖) ε (4.2)

fl (fl(y)∗ fl(x)) = (y + δy)∗ x where ‖δy‖ ≤ mε ‖y‖ (4.3)

fl (fl(A) fl(x)) = (A + δA) x, where |δA| ≤ νε|A|. (4.4)

Proposition 4.2. Assume that taking square roots introduces a relative error no

greater than ε. Then

c = + fl
(√

fl(x)∗ fl(x)
)

=

(
1 +

1

2
(m+ 2)ζ

)
‖x‖ (4.5)

y = fl

(
fl(x)

c

)
= diag (1 + ζ) x/c (4.6)

y∗y = 1 + (m+ 4)ζ, (4.7)

where |ζ| ≤ ε.

We now have all we need to analyze the behavior of Algorithm 4.1 when imple-

mented on a computer.
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4.1 Paige’s Analysis

Consider the situation at the end of the n-th iteration of the Algorithm 4.1. The

algorithm has generated the matrix Qn of Lanczos basis vectors

Qn =
[
q1 q2 . . . qn−1 qn

]
and has reduced the original matrix A to the tridiagonal matrix Tn:

Tn =



α1 β2

β2 α2 β3

β3
. . .

. . . αn−1 βn

βn αn


.

Due to rounding errors, however, the recurrence is no longer exact, and must be

adjusted by an error term Fn:

AQn = QnTn + βn+1qn+1e
T
n + Fn (4.8)

where

Fn =
[
f1 f2 . . . fn−1 fn

]
.

(4.9)

Moreover, the basis vectors qj no longer have norm exactly equal to 1; the following

proposition quantifies how far the finite-precision qj’s are from having unit norm [24]:

Proposition 4.3. Assume Algorithm 4.1 has not yet converged (i.e., βn+1 6= 0). If

Algorithm 4.1 is performed in finite-precision arithmetic, then, at the n-th step of the

computation, the following estimate will hold for j = 1, . . . , n:

|q∗j+1qj+1 − 1| ≤ (m+ 4) ε. (4.10)
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Proof. Equation (4.10) follows immediately from (4.7).

A simple consequence of (4.10) is the inequality

1− 1

2
(m+ 4)ε ≤ fl (‖qj‖) ≤ 1 +

1

2
(m+ 4) ε, j = 1, . . . , n (4.11)

which will be used frequently in the sequel.

4.1.1 Step-By-Step Analysis of the Lanczos Algorithm

Let us now proceed step by step through Algorithm 4.1, constructing estimates on the

quantities involved. Our goal is to gain further insight into how the roundoff errors

propagate and accumulate through the algorithm. This will ultimately allow us to

assess the performance of the Lanczos algorithm on a computer.

The given initial vector q1 is assumed to have unit norm in exact arithmetic. In

the computer, however, it is possible that q1 cannot be represented exactly. From

(4.11), though, we are assured that the finite-precision representation of q1 satisfies

1− 1

2
(m+ 4) ε ≤ fl (‖q1‖) ≤ 1 +

1

2
(m+ 4) ε. (4.12)

In the second step of the algorithm, we construct u1 = Aq1. In the computer,

however, we actually have u1 = fl(fl(A) fl(q1)). Using (4.4) we have

u1 = fl (fl(A) fl(q1)) = Aq1 + δu1, ‖δu1‖ = ‖δAq1‖ ≤ νβεσ. (4.13)

Therefore

‖u1‖ ≤ ‖A‖ fl (‖q1‖) + ‖δu1‖ = σ fl (‖q1‖) + νβεσ.

Using the bound on ‖q1‖ we developed in (4.12), we conclude that

‖u1‖ ≤ σ

(
1 +

1

2
(m+ 4) ε

)
+ νβεσ =

[
1 + ε

(
m+ 2νβ + 4

2

)]
σ. (4.14)

The next steps of the algorithm occur inside a for loop. Ultimately, we would like

to construct bounds on the quantities inside the loop that are independent of the loop
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index n. This is quite hard to do all in one go. It is significantly easier to construct

bounds that depend on n first, and to then bound all these quantities at once. This

is the approach taken by Paige in [24], and it is the approach we take: we will bound

all quantities in terms of un, and afterwards construct a bound on the un’s that is

independent of n.

Step 4 of Algorithm 4.1 constructs the diagonal element αn of the matrix Tn. From

(4.3) we have

αn = fl (fl(qn)∗ fl(un)) = q∗nun − δαn, (4.15)

where

|δαn| = |δq∗nun| ≤ ‖δqn‖ ‖un‖ ≤ mε ‖un‖ , (4.16)

since ‖qn‖ ≤ (1 + (m+ 4)/2)ε by (4.11). Therefore, using (4.11) once more we have

|αn| ≤ ‖qn‖ ‖un‖+mε ‖un‖ ≤
(

1 +
3m+ 4

2
ε

)
‖un‖ . (4.17)

Next we construct wn = un−αnqn. Its finite-precision representation has the form

fl(wn) = fl (fl(un)− fl(αn) fl(qn)) = un − αnqn − δwn, (4.18)

where from (4.2) the error term δwn is bounded in norm by 3 ‖un‖ ε:

‖δwn‖ := (‖un‖+ 2 ‖αnqn‖) ε

≤ ‖un‖ ε+ 2

[(
1 +

3m+ 4

2
ε

)
‖un‖

] [
1 +

m+ 4

2
ε

]
ε

= 3 ‖un‖ ε. (4.19)

It will be helpful to us shortly to have a bound on ‖wn‖2, so we calculate:

‖wn‖2 = ‖un − αnqn − δwn‖2

= ‖un‖2 + α2
n

(
‖qn‖2 − 2

)
− 2αnδαn − 2δw∗n (un − αnqn) + ‖δwn‖2 . (4.20)
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Therefore, using (4.10) and equations (4.15)-(4.19) we have

| ‖wn‖2 + α2
n − ‖un‖

2 | ≤ (m+ 4) ‖un‖2 ε+ 2m ‖un‖2 ε+ 6ε ‖un‖2 − 6ε|αn| ‖un‖ ‖qn‖

≤ (3m+ 10) ‖un‖2 ε. (4.21)

In step 6 of the algorithm, we set the next off-diagonal element βn+1 equal to the

norm of wn. In (4.5) we established that in finite-precision arithmetic,

|βn+1| =
[
1 +

m+ 2

2
ε

]
‖wn‖ .

From equation (4.21) above, it follows that

‖wn‖2 ≤ (1 + (3m+ 10)ε) ‖un‖2 .

Combining these two results yields the bound

|βn+1| ≤ (1 + (2m+ 6)ε) ‖un‖ . (4.22)

Since we are implicitly assuming the algorithm has not yet converged, the next step

to be analyzed in Algorithm 4.1 is step 9. In this step, we construct the next Lanczos

basis vector by normalizing wn. From (4.2) we have

fl (fl(βn+1) fl(qn+1)) = wn + δw′n, (4.23)

where

‖δw′n‖ ≤ (|βn+1| ‖qn+1‖) ε ≤ (1 + (2m+ 6)ε) ‖un‖
(

1 +
m+ 4

2
ε

)
ε = ‖un‖ ε. (4.24)

It remains to bound the final step of Algorithm 4.1. Using (4.2) and (4.4), we

have

fl(un) = Aqn − βnqn−1 + δun + δAqn, (4.25)

where the norm of the error term is bounded as follows:

‖δun + δAqn‖ ≤ (‖A‖ ‖qn‖+ 2|βn| ‖qn−1‖+ νβσ ‖qn‖) ε

≤ [σ + 2 (1 + (2m+ 6)ε) ‖un−1‖+ νβσ]

(
1 +

m+ 4

2
ε

)
ε

= (1 + νβ)σε+ 2 ‖un−1‖ ε. (4.26)
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At this point, let us stop and reflect upon our efforts so far. We have developed

estimates for all the rounding errors that are introduced in each step of Algorithm 4.1.

Our estimates, however, are in terms of ‖un‖’s, and we would like to rid ourselves of

this dependence. Our next goal will thus be to develop a bound on ‖un‖ independent

of n that will remedy this situation. In the process, we will take a closer look at how

finite-precision affects the orthogonality of the basis vectors.

4.1.2 The Effect of Finite-Precision Arithmetic on Orthogonality

The performance of the Lanczos algorithm depends on the basis vectors qn main-

taining orthogonality to within machine accuracy. As the reader may recall, the

Lanczos iteration, in exact arithmetic, constructs a basis q1, . . . , qn for the Krylov

space Kn(b;A). In exact arithmetic, the algorithm was guaranteed to converge in

m steps because m mutually orthogonal basis vectors spanned all of Rm. In finite-

precision arithmetic, the constructed vectors might not be mutually orthogonal, so

convergence is no longer guaranteed to occur in m steps. In this subsection we will

examine several of the critical steps in the algorithm, steps where a significant loss of

orthogonality could have dire consequences.

During each iteration of the algorithm we construct the basis vector qn+1 according

to the prescription of (4.23):

βn+1qn+1 = wn + δw′n.

Using (4.18) and (4.25), this reduces to

βn+1qn+1 = (Aqn − αnqn − βnqn−1) + (δw′n − δwn − (δun + δAqn)) , (4.27)

which is precisely the n-th column of (4.8), suitably rearranged. The error term is



44

bounded easily using (4.24), (4.19), and (4.26):

‖fn‖ = ‖δw′n − δwn − (δun + δAqn)‖

≤ ‖un‖ ε+ 3 ‖un‖ ε+ (1 + νβ)σε+ 2 ‖un−1‖ ε

= (1 + νβ)σε+ (4 ‖un‖+ 2 ‖un−1‖) ε. (4.28)

In order to understand the conditions under which a loss of orthogonality between

consecutive basis vectors can occur, we would like to estimate the size of q∗nqn+1. Using

(4.23), (4.18), and (4.15), we have

βn+1q
∗
nqn+1 = δαn − αn (q∗nqn − 1) + q∗n (δw′n − δwn) .

Therefore, using the bounds we have developed so far, we have

βn+1|q∗nqn+1| ≤ 2(m+ 4) ‖un‖ ε. (4.29)

This bound is not satisfactory, however, as we do not know anything about the size

of ‖un‖. Later in this chapter, however, we will develop a bound on the size of ‖un‖

that will allow us to quantify precisely how sensitive the inner product q∗nqn+1 is to

rounding error.

What about orthogonality among all the vectors generated so far by the algorithm?

The matrix Qn may no longer be orthogonal due to the roundoff errors that are now

involved. We can express how far Qn is from orthogonal using the decomposition

Q∗nQn = R∗n + diag
(
q∗j qj

)
+Rn, (4.30)

where the matrix Rn = [ρij] is strictly upper triangular. First, we establish a fact

about the structure of Rn.

Proposition 4.4.

TnRn −RnTn = βn+1Q
∗
nqn+1e

T
n +Hn, (4.31)

where Hn = [ηij] is an upper triangular matrix.



45

Proof. Multiply (4.8) on the left by Q∗n to obtain

Q∗nAQn = Q∗nQnTn + βn+1Q
∗
nqn+1e

T
n +Q∗nFn.

The left hand side is Hermitian, so if we take the conjugate transpose of each side

and equate the resulting right hand sides, we conclude that

Q∗nQnTn + βn+1Q
∗
nqn+1e

T
n +Q∗nFn = TnQ

∗
nQn + βn+1enq

∗
n+1Qn + F ∗nQn.

Upon regrouping the terms and using the definition of Rn this becomes

Tn (R∗n +Rn)− (R∗n +Rn)Tn = βn+1

(
Q∗nqn+1e

T
n − enq∗n+1Qn

)
+Q∗nFn − F ∗nQn+

diag (q∗i qi)Tn − Tn diag (q∗i qi) . (4.32)

The diagonal elements of each side of this equality are zero, since both sides are of

the form P − P ∗.

To simplify our analysis of (4.32), let us define

Mn := TnRn −RnTn. (4.33)

This matrix is clearly upper triangular, and using this definition the left hand side

of (4.32) becomes Mn − M∗
n. The diagonal entries of Mn can be found by direct

calculation of the right hand side of (4.33):

µjj = [Mn]jj = [TnRn]jj − [RnTn]jj

= (0, β2ρ12, β3ρ23, . . . , βnρn−1,n)− (β2ρ12, β3ρ23, . . . , βnρn,n−1)

=


β2ρ12, if j = 1;

βjρj−1,j − βj+1ρj,j+1, for j = 2, . . . , n− 1;

βnρn,n−1, if j = n.

Finally, we claim that

Mn = βn+1Q
∗
nqn+1e

∗
n +Hn (4.34)
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where Hn is an upper triangular matrix. This is easy to see, however, for direct

calculation shows that the quantities Q∗nFn−F ∗nQn and diag (q∗i qi)Tn−Tn diag (q∗i qi)

can be written as Kn −K∗n and Nn −N∗n respectively, where Kn and Nn are strictly

upper triangular [24]. Thus Hn = diag (Mn) +Nn +Kn, which establishes that Hn is

upper triangular.

By equating the corresponding entries on each side of (4.33) we see that the entries

ηij of Hn are given by the formulae

η11 = −β2ρ12

ηjj = −βjρj−1,j − βj+1ρj,j+1, for 2 ≤ j ≤ n− 1;

ηnn = βnρn−1,n

ηj−1,j = (q∗j−1fj − f ∗j−1qj) + βj(q
∗
j−1qj−1 − q∗j qj)

ηij = q∗i fj − f ∗i qj for all other i, j.


(4.35)

As it turns out, the structure of Hn will provide us with an easy way to bound un.

4.1.3 Bounds on ‖un‖

It remains only to construct a bound on ‖un‖, from which all our desired estimates

will follow. Define

µn = max
1≤i≤n

‖ui‖ . (4.36)
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It is a simple task to establish estimates on the size of the entries of Hn in terms of

µn using the estimates (4.29), (4.28), (4.11), and (4.22):

|η11| ≤ |β2||ρ12| = β2|q∗1q2| ≤ 2(m+ 4)µnε

|ηnn| ≤ |βn||ρn−1,n| = βn|q∗n−1qn| ≤ 2(m+ 4)µnε

|ηjj| ≤ |βj||ρj−1,j|+ βj+1|ρj,j−1| ≤ 4(m+ 4)µnε

|ηij| ≤ |q∗i fj − f ∗i qj| ≤ 2 [(1 + νβ)σ + 6µn] ε

|ηj−1,j| = |q∗j−1fj − f ∗j−1qj + βj
(
q∗j−1qj−1 − q∗j qj

)
|

≤ 2 [(1 + νβ)σ + (m+ 10)µn] ε.



(4.37)

Using these bounds on the elements of Hn and a few clever tricks, Paige [24] proved

the following bound.

Proposition 4.5. Suppose that

4n {3 (m+ 4) ε+ (7 + νβ) ε} � 1. (4.38)

Then the bound

‖un‖ ≤ σ {1 + 2n [3 (m+ 4) ε+ (7 + νβ) ε]} (4.39)

holds at each step of Algorithm 4.1.

For the proof of this statement, see Appendix C.

Now that we have a bound on un, we can complete our analysis of Algorithm 4.1.

4.1.4 Conclusion of Paige’s Analysis

Proposition 4.6. Assume (4.38). Then

‖fn‖ ≤ σ (7 + νβ) ε. (4.40)

Proof.

‖fn‖ ≤ (1 + νβ)σε+ (4 ‖un‖+ 2 ‖un−1‖) ε ≤ σ(1 + νβ)ε+ 6σε = σ(7 + νβ)ε.
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This gives a bound on the size of the error in the recurrence at each step. It also

gives us a bound on the Frobenius norm of the error matrix Fn:

‖Fn‖F =

{
n∑
j=1

‖fj‖2}

}1/2

≤
√
n(7 + νβ)σε. (4.41)

We can also finish the analysis we started in equation (4.29) of how finite-precision

affects the orthogonality of consecutive Lanczos vectors.

Proposition 4.7. Assume (4.38). Then

|βn+1||q∗nqn+1| ≤ 2σ (m+ 4) ε. (4.42)

Proof.

|βn+1||q∗nqn+1| ≤ 2(m+ 4) ‖un‖ ε ≤ 2(m+ 4)σε.

Orthogonality between consecutive basis vectors is hence only lost if βn+1 is small,

i.e. if there is significant cancellation in step 5 of Algorithm 4.1. (But note that if

βn+1 = 0 to machine precision, the algorithm is considered to have converged, and

the whole matter is moot[12].)

Finally, we can now establish an easy bound on the size of the matrix H.

Proposition 4.8. Assume (4.38). Then the elements ηij of the matrix H satisfy

|η11| ≤ 2σ (m+ 4) ε

|ηjj| ≤ 4σ (m+ 4) ε for j = 2, . . . , n− 1;

|ηnn| ≤ 2σ (m+ 4) ε

|ηj−1,j| ≤ 2σ((m+ 4) ε+ (7 + νβ) ε) for j = 2, . . . , n;

|ηij| ≤ 2σ (7 + νβ) ε, for i = 1, 2, . . . , j − 2.

(4.43)

Proof. This follows immediately from (4.37) and (4.39).
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From this proposition we may derive the following bound on the Frobenius norm

of Hn:

‖Hn‖F ≤ σε {8(n− 1)(m+ 4) + n(n− 1)(7 + νβ)} . (4.44)

This will be useful to us in our analysis of the behavior of the Ritz vectors in finite-

precision arithmetic.

4.2 Effects of Finite-Precision on the Ritz Vectors

We can perform a similar analysis on the Ritz vectors generated by the Lanczos

algorithm at the n-th step. Let us denote the eigenvalue estimates and Ritz vectors

at the n-th step by θ
(n)
j and y

(n)
j , respectively. The eigenvectors of Tn will be denoted

s
(n)
j , so that y

(n)
j = Qns

(n)
j . In order to simplify the analysis, we will assume that the

eigenvalues θ
(n)
j and eigenvectors s

(n)
j of Tn are exact, so that the eigendecomposition

Tn = SnΘnS
∗
n, Sn = [s

(n)
1 | . . . |s(n)n ], Θn = diag(θ

(n)
1 , . . . , θ(n)n ) (4.45)

is exact.

Let us first consider the effect of finite-precision arithmetic on the Ritz vectors

y
(n)
j . The following proposition, which describes the behavior of the Ritz vectors,

appears in Paige’s thesis [23]; our treatment is based upon that of Parlett [26].

Proposition 4.9. The Ritz vectors y
(n)
j satisfy

(
y
(n)
j

)∗
qn+1 =

(s
(n)
j )∗Hns

(n)
j

βn+1sjn
, (4.46)

where sjn denotes the n-th component of s
(n)
j .

Proof. Multiply equation (4.34) on the left by (s
(n)
j )∗ and on the right by s

(n)
j to obtain

the identity

(s
(n)
j )∗

(
βn+1Q

∗
nqn+1e

T
)
s
(n)
j = (s

(n)
j )∗Hns

(n)
j − (s

(n)
j )∗Mns

(n)
j . (4.47)
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The left hand side equals(
(s

(n)
j )∗Q∗n

)
(qn+1βn)

(
eT s

(n)
j

)
= (y

(n)
j )∗qn+1βnsjn (4.48)

and the (s
(n)
j )∗Mns

(n)
j term on the right hand side vanishes, since

(s
(n)
j )∗Mns

(n)
j = (s

(n)
j )∗ (TnRn −RnTn) s

(n)
j = 0.

Thus we conclude (
y
(n)
j

)∗
qn+1 =

(s
(n)
j )∗Hns

(n)
j

βn+1sjn
,

as desired.

Proposition 4.9 relates the orthogonality of the Ritz vectors y
(n)
j that we have

already computed to the next Lanczos basis vector. Let us now consider what happens

as a Ritz vector begins to converge. From the Lanczos recurrence (1.10) we have

AQn = QnTn + βn+1qn+1e
T
n .

Multiply both sides of this equation by the eigenvector s
(n)
j to obtain

Ay
(n)
j = y

(n)
j θj + βn+1qn+1e

T
ns

(n)
j .

Hence we have ∥∥∥Ay(n)j − y
(n)
j θj

∥∥∥ = |βn+1||eTns
(n)
j |, (4.49)

since qn+1 has unit norm. The left hand side of this equation measures how well

the Ritz vector y
(n)
j approximates an eigenvector of A. In particular, when y

(n)
j has

converged (to within machine accuracy) to an eigenvector of A, we see that the right

hand side of (4.49) is small.

Combining this fact with Proposition 4.9, it is clear that qn+1 is not orthogonal to

the converged Ritz vector. Thus, the Lanczos basis vectors lose their orthogonality

in the direction of converged Ritz vectors [13, 23, 25]. Furthermore, it is only when a

Ritz vector begins to converge that the basis vectors lose their orthogonality.
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4.3 What about the orthogonal polynomials?

As we showed in Chapter 3, the Lanczos iteration, in exact arithmetic, generates

orthogonal polynomials for a set of weights on the eigenvalues of A. These polynomials

satisfy a three-term recurrence and are orthogonal with respect to the w-inner product

defined in (3.6). Furthermore, the weights are the squared components of the initial

vector q1 in the direction of each eigenvector of A[14].

Let us suppose now that we perform the calculation in finite-precision arithmetic.

Assume once again that the Lanczos recurrence can be expressed as

βnqn+1 = Aqn − αnqn − βn−1qn−1 + fn, (4.50)

where fn represents the error incurred by using finite-precision arithmetic. Let A =

UΛU∗ be the eigendecomposition of A as before. By an analysis identical to that

performed in Chapter 4, we may show that (4.50) gives rise to a three-term recurrence

βnφn(z) = zφn−1(z)− αnφn−1(z)− βn−1φn−2(z)− ξn(z), (4.51)

where the φn’s are polynomials of degree n and ξn is a function (not necessarily

polynomial) satisfying ξn(λj)q̂j1 = U∗fij [14]. The coefficients αn and βn are given

explicitly by the formulae

αn = 〈zφn−1(z)− βn−1φn−2(z), φn−1(z)〉w

βn = ‖zφn−1(z)− αnφn−1(z)− βn−1φn−2(z)‖w .

From these formulae it is clear that βn is nonnegative for every n. Thus, by Favard’s

Theorem, these are the recurrence coefficients for a family of polynomials ψn that

are orthogonal with respect to some weight function w̃(x) [14]. This weight function,

however, is not necessarily related to our earlier weight w(x), and the ψn’s may not

be w-orthogonal.

In [13] Greenbaum showed that the weight function w̃(x) resembles a “smeared-

out” version of our original weight. This statement will be made more precise in the

next section.
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4.4 Greenbaum’s Analysis

Another significant contributor to our understanding of how the Lanczos algorithm

behaves in inexact arithmetic was Anne Greenbaum. In [13] she demonstrated that

the finite-precision version of the Lanczos algorithm applied to A generates the same

tridiagonal matrices Tn as the exact algorithm applied to a larger matrix Ã. The

eigenvalues of this larger matrix are distributed in tiny intervals about the true eigen-

values of A, and may be more numerous than those of A [13].

One implication of this is that the finite-precision Lanczos algorithm generates

polynomials that are orthogonal with respect to weights on the eigenvalues of the

larger matrix Ã [13]. Since the true eigenvalues of A lie near those of Ã, the “true”

weight function corresponding to the eigenvalues of A appears to have been “smeared”

over tiny intervals by the rounding errors.

In [13] Greenbaum established bounds on the size of the intervals in terms of the

machine precision ε and the loop index n. To date, it is not known if these are the

best possible bounds. While it is (highly) improbable that a bound independent of

ε exists, Greenbaum suggested that an (interesting) bound independent of n might

exist [14, 13]. What this bound is, however, remains an unanswered question.

4.5 Ghost Eigenvalues

Finally, we briefly discuss the often observed phenomenon of “ghost” eigenvalues.

These are extra Ritz values approximating an eigenvalue of A to which a Ritz approxi-

mation has already been found. These values are not indications of the multiplicity of

the true eigenvalue, as one might think; rather, they are nothing more than artifacts

of our inexact implementation [14, 31].

It is possible to provide a rigorous explanation of this phenomenon; however, as

this explanation is rather involved and hard-to-follow, we summarize some of its more

salient points here.
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In the previous section we described how the finite-precision version of the Lanczos

algorithm constructs a family of polynomials that are orthogonal with respect to

weights that live near, but not necessarily on, the eigenvalues of A. It is a fact of

orthogonal polynomial theory (see [30]) that the zeros of these orthogonal polynomials

interlace the points of increase of the weight function (the points on which the weight

function is defined). Whereas in the exact case the associated orthogonal polynomials

can have at most two roots near an eigenvalue of A (one on either side), the associated

polynomials in the inexact case can have multiple roots near a true eigenvalue [12].

Since the computed eigenvalues are the roots of the associated polynomials, we see

that multiple approximations to the same eigenvalue of A can and will occur if the

algorithm is allowed to run long enough.

There are methods of preventing the appearance of “ghost” eigenvalues, but they

are not without cost. One easy way to do this is to modify Algorithm 4.1 to save all

the computed Lanczos basis vectors instead of overwriting them at each step. New

basis vectors are then explicitly reorthogonalized against all the previous vectors. A

similar modification saves the converged Ritz vectors instead of the basis vectors.

While each of these methods will “ward off ghosts”, they require more work and more

storage. Similar statements are true for other “ghostbusting” methods. If storage

requirements are critical (but processing time is not), the simplest solution to this

problem is just to ignore the superfluous solutions.
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CONCLUSION

We have seen how the Lanczos algorithm is intimately related to the theory of

orthogonal polynomials. The tridiagonal matrices generated by applying the Lanczos

algorithm to a Hermitian matrix have a family of orthogonal polynomials as their

characteristic polynomials. Conversely, a family of orthogonal polynomials gives rise

to a family of tridiagonal matrices which have those polynomials as their characteristic

polynomials. This provides a useful connection between the zeros of the polynomials

and the eigenvalues of the matrices.

We have also seen how orthogonal polynomials provide an easy explanation for

the observed behavior of the Lanczos algorithm in finite-precision arithmetic. The

Lanczos algorithm, in inexact arithmetic, produces polynomials orthogonal with re-

spect to a weight defined near the eigenvalues of A. This concept also provides a

simple explanation for the observed phenomenon of ghost eigenvalues.

There are many more consequences of the connection between the Lanczos algo-

rithm and orthogonal polynomials, and, unfortunately, we can only cover so much

here. Many things were omitted from this thesis due to a lack of time. In these final

paragraphs we shall mention some of the other work that has been done in this area.

We unfortunately did not have time to construct numerical examples of the phe-

nomena we discussed in Chapter 4. The interested reader can see [13], [14], or [31]

for examples, or can conduct their own experiments (using MATLAB, for instance).

The finite-precision analysis we presented here has also been carried out for the

conjugate gradients algorithm. The paper by Greenbaum [13] is the most authorita-

tive treatment of the subject.

Golub and Strakos [10] have explored connections between the Lanczos algorithm,
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conjugate gradients, and mechanical quadrature. In their paper they explore a means

of estimating quadratic forms via Gauss quadrature and the Lanczos algorithm. They

then use their method to investigate the convergence of conjugate gradients in finite-

precision arithmetic.
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Appendix A

A BRIEF PRIMER OF MECHANICAL QUADRATURE

Mechanical quadrature, the process of computing integrals numerically, has a long

and interesting history. One would not think that such a seemingly simple task as

calculating the value of an integral would attract some of the greatest minds of the

nineteenth- and twentieth-centuries. In this chapter, we will explore the development

of quadrature rules and their intimate connections to orthogonal polynomials.

A.1 Newton-Cotes Quadrature

As do many other branches of mathematics, the history of mechanical quadrature

begins with Newton. Sir Isaac Newton, the renowned mathematician, physicist, and

philosopher, was the first to devise a general method for calculating approximate

values of integrals. Roger Cotes, who, independently of Newton, developed meth-

ods similar to Newton’s, refined these ideas into a workable theory of approximate

integration.

In the last quarter of the seventeenth-century, Newton devised a method of inter-

polating a function at a given set {ξj : j = 1, . . . , n} of distinct points by a polynomial.

He originally derived a formula for his interpolating polynomial in terms of divided

differences; we will, however, employ the more modern tool of Lagrange interpolating

polynomials.

The Lagrange interpolating polynomial lj(x) of degree n−1 is defined by the

equation

lj(x) =
(x− ξ1) · · · (x− ξj−1)(x− ξj+1) · · · (x− ξn)

(ξj − ξ1) · · · (ξj − ξj−1)(ξj − ξj+1) · · · (ξj − ξn)
. (A.1)
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The Lagrange interpolant is more succinctly expressed in the form

lj(x) =
ωn(x)

ω′n(ξj)(x− ξj)
, (A.2)

where

ωn(x) =
n∏
j=1

(x− ξj) (A.3)

is the node polynomial of degree n.

When expressed in terms of Lagrange interpolants, Newton’s interpolating poly-

nomial becomes

pn−1(f ;x) =
n∑
j=1

lj(x)f(ξj). (A.4)

Newton then writes

f(x) = pn−1(f ;x) + rn(f ;x), (A.5)

where rn(f ;x) denotes the error in the interpolation. Since the Lagrange interpolant

is unique (it is the only polynomial of degree n−1 that satisfies lj(ξi) = δij), we know

that rn(f ;x) ≡ 0 for all polynomials f of degree at most n − 1. Newton integrates

(A.5) over a nondegenerate finite interval [a, b] to obtain the n-point quadrature

formula

I(f) :=

∫ b

a

f(x) dx = Qn(f) +Rn(f), (A.6)

where

Qn(f) =

∫ b

a

pn−1(f ;x) dx =
n∑
j=1

λjf(ξj) (A.7)

is the quadrature sum,

λj = I(lj) =

∫ b

a

lj(x) dx (A.8)

are the weights of the quadrature formula, and

Rn(f) = I(rn(f ;x)) =

∫ b

a

rn(f ;x) dx (A.9)
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is the remainder or error in the approximation. The points ξj are called the nodes

of the quadrature formula.

By construction, Rn vanishes for all polynomials of degree n − 1 or less. This is

often expressed by saying that Qn has degree of exactness n − 1, and we write

(after Radau) d(Qn) = n − 1. (It follows that d(Qn) = k for any integer k with

0 ≤ k < n.) The quadrature rule Qn is also called interpolatory, since it is obtained

by interpolation of n points. It is clear that Qn is interpolatory iff it has degree of

exactness n− 1.

Roger Cotes, who derived similar expressions for approximate integrals indepen-

dently of Newton, computed the weights λj for quadrature rules with n ≤ 11 and

equally spaced nodes. The λj are often called Cotes numbers in his honor.

One way of calculating the Cotes numbers is to observe that since Rn ≡ 0 for all

polynomials of degree n− 1 or less, we have the n equations

n∑
j=1

λjτ
k
j =

∫ b

a

xk dx, k = 0, 1, . . . , n− 1. (A.10)

When written in matrix form, this system becomes

1 1 . . . 1

τ1 τ2 . . . τn

τ 21 τ 22 . . . τ 2n
...

...
. . .

...

τn−11 τn−12 . . . τn−1n





λ1

λ2

λ3
...

λn


=



b− a∫ b
a
x dx∫ b

a
x2 dx
...∫ b

a
xn−1 dx


. (A.11)

The Cotes numbers can thus be obtained by solving this system [5]. This method,

however, is not the best method for obtaining the Cotes numbers; better methods

will be discussed shortly.

The formula (A.6) is known today as the Newton-Cotes quadrature rule. Well-

known special cases of it include the trapezoid rule (n = 2) and Simpson’s rule (n = 4).

The Newton-Cotes quadrature served as the cornerstone upon which Gauss, Jacobi,

and many others would build the theory of mechanical quadrature.
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A.2 Gauss-Jacobi Quadrature

As we discussed above, an arbitrary n-point Newton-Cotes quadrature Qn has degree

of exactness n− 1. Can we, however, do any better? Can we choose the nodes ξj in

such a fashion as to achieve a rule for which d(Qn) > n− 1? If so, how much better

can we do? And how should we choose the nodes?

For starters, it is easy to see that since we have exactly 2n unknowns (nodes ξj

and weights λj), we will need 2n conditions on the unknowns in general. These 2n

conditions can be found by requiring the rule to be exact for polynomials of degrees

0, . . . , 2n− 1, i.e., by requiring that d(Qn) = 2n− 1. Furthermore, we see that 2n− 1

is the maximum degree of exactness that we can require, as higher degrees will result

in an overdetermined system that may not possess a solution.

It was Carl Friedrich Gauss who first pondered the question of how to choose

the nodes optimally, and it was also Gauss who solved the problem. His nineteenth-

century solution is not at all obvious—he uses continued fractions for ratios of hyper-

geometric functions, a tool that he also developed. A few years later, Jacobi would

provide a more lucid proof.

Gauss began by examining a “generating function” for the remainders of mono-

mials of the form

∞∑
k=0

Rn(xk)

zk+1
.
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He then manipulates this formal sum to obtain a closed-form formula for the sum:

∞∑
k=0

Rn(xk)

zk+1
=
∞∑
k=0

1

zk+1

(
I(xk)−Qn(xk)

)
=
∞∑
k=0

1

zk+1

(
I(xk)−

n∑
j=1

λjξ
k
j

)

= I

(
1

z

∞∑
k=0

xk

zk

)
−
∞∑
k=0

n∑
j=1

λj
ξkj
zk+1

= I

(
1

z − x

)
−

n∑
j=1

λj
1

z − ξj

= Rn

(
1

z − x

)
.

Under this interpretation, Qn has degree of exactness 2n− 1 iff

Rn

(
1

z − x

)
= O

(
1

z2n+1

)
(A.12)

as z →∞.

The integral
∫ b
a
dx/(z−x) was already familiar to Gauss in the context of continued

fractions. By a suitable change of variables we may assume that the domain of

integration is [−1, 1]. An elementary calculation shows that∫ 1

−1

1

z − x
dx = log

1 + 1/z

1− 1/z
. (A.13)

The right-hand side of this equation has a continued fraction expansion

log
1 + 1/z

1− 1/z
=

2

z −
1/3

z −
3/5

z − · · ·

. (A.14)

This expansion comes from Gauss’ more general expansion for the quotient of two

hypergeometric functions [9].

Gauss considers the n-th convergent Rn−1,n of the continued fraction (A.14), which

is easily seen to be a rational function having a numerator Nn−1 of degree n−1 and a
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denominator Dn of degree n. (These polynomials, it will turn out, are the Legendre

polynomials of the first and second kind, respectively.)

By expanding Rn−1,n in terms of powers of 1/z, he shows that

In

(
1

z − x

)
= Rn−1,n(z) +O

(
1

z2n+1

)
(A.15)

for large z. He then decomposes the n-th convergent into partial fractions with the

nodes ξj as poles and the weights λj as residues. We thus have the quadrature

expression

Qn

(
1

z − x

)
:= Rn−1,n(z) =

n∑
j=1

λj
z − ξj

. (A.16)

Upon putting (A.15) and (A.16) together we obtain the desired asymptotic growth

(A.12), completing the proof.

While Gauss’s proof would later inspire Christoffel’s generalization to weighted

integrals (and Stieltjes measures), it was not, in the eyes of Carl Gustav Jacob Jacobi,

the simplest proof. Jacobi rederived Gauss’s result in a much clearer fashion, using

arguments based upon orthogonal polynomials (though the notion of “orthogonal

polynomials” was unknown at the time). Jacobi proved the following theorem.

Theorem A.1 (Jacobi). Given an integer k such that 0 ≤ k < n, the quadrature rule

Qn has degree of exactness d(Qn) = n− 1 + k iff it has degree of exactness n− 1 and

the node polynomial ωn is orthogonal to all polynomials of degree at most k − 1, i.e.,

I(ωnp) for all polynomials p with deg p ≤ k − 1.

From the orthogonality condition we see that d(Qn) ≤ 2n − 1, since the node

polynomial ωn cannot be orthogonal to itself.

Proof. Clearly, if Qn is exact for polynomials of degree 2n − 1 or less, it is exact

for polynomials of degree n − 1 or less. Moreover, if p is a polynomial of degree at

most k − 1, then ωnp is a polynomial of degree at most n + (k − 1). By hypothesis,



62

Rn(ωnp) = 0, so I(ωnp) = Qn(ωnp). However,

Qn (ωnp) =
n∑
j=1

λjωn(ξj)p(ξj) = 0, (A.17)

since ωn vanishes at each node ξj.

On the other hand, suppose p is an arbitrary polynomial of degree at most n−1+k.

By the Division Algorithm there exist polynomials q of degree at most k− 1 and r of

degree at most n− 1 such that p = ωnq + r. Then I(p) = I(ωnq) + I(r) = I(r), since

ωn is orthogonal to polynomials of degree less than k. But Qn is exact for r, so

I(p) = I(r) = Qn(r) = Qn(p)−Qn(qωn) = Qn(p). (A.18)

Thus d(Qn) = n− 1 + k as desired.

For the case k = n, Jacobi’s theorem tells us that the node polynomial ωn is

orthogonal to all polynomials of lower degree; if we take the interval of integration to

be [−1, 1] (which we can always do by an affine change of variables), we see that ωn

is a scalar multiple of the n-th Legendre polynomial Pn defined in Chapter 3. Thus,

using the zeros of Pn as nodes for Qn provides us with a quadrature rule of maximum

degree of exactness.

Jacobi also managed to show (using the above line of reasoning and the Rodrigues

formula for the Legendre polynomials) that the nodes ξj (i.e., the zeros of Pn) are

real, simple, and contained in (−1, 1) [9].

The quadrature method discussed above, particularly the case k = n, came to be

known as Gauss-Jacobi quadrature. Over the next fifty years, several mathemati-

cians devised variants on the Gauss-Jacobi method, in which the Legendre polynomi-

als were replaced by other, newly discovered families of orthogonal polynomials (the

Chebyshev polynomials, the Laguerre polynomials, etc.)
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A.3 Generalizations to Weighted Integrals

Almost half a century later, the German mathematician Elwin Bruno Christoffel

produced a more general version of the Gauss-Jacobi quadrature that superseded all

these variants. Christoffel extended Jacobi’s theorem and Gauss’s continued fraction

proof to weighted integrals over finite intervals. About fifteen years later, Thomas

Stieltjes would extend these results to integrals with respect to Stieltjes measures on

subsets of the real line.

In what follows, we will consider integrals with respect to (positive) Stieltjes mea-

sures:

I(f) =

∫ b

a

f(x) dλ(x).

Here [a, b] ⊆ R is a (possibly) infinite interval and dλ(x) is a Stieltjes measure on [a, b].

It is assumed that λ(x) has infinitely many points of increase, and that the measure

dλ(x) has finite moments of all orders; that is,
∫ b
a
xn dλ(x) <∞, for all n ≥ 0.

The quadrature formula analogous to (A.6) and possessing degree of exactness

2n−1 is called a Gauss-Christoffel quadrature formula; its weights λj are referred

to as the Christoffel numbers for measure dλ.

Christoffel’s theory of quadrature rests upon orthogonal polynomial theory. As

we saw in Chapter 3, there is a unique family {pn} of monic orthogonal polynomials

associated with the real inner product induced by dλ (〈v, w〉 =
∫ b
a
vw dλ). This family

satisfies a three-term recurrence (see Chapter 3) with real coefficients.

Jacobi’s theorem (Theorem A.1) extends unchanged to Christoffel’s theory. We

again find that the nodes ξj of the quadrature rule Qn are the zeros of the correspond-

ing orthogonal polynomial pn, and that the nodes are real, simple, and contained in

the interval (a, b).

Finally, we again find that all Christoffel numbers are positive. Consider the

integral ∫ b

a

(lj(x))2 dλ(x). (A.19)
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Its value is clearly positive. The integrand (lj(x))2 is a polynomial of degree at most

2n− 2, so our quadrature formula computes (A.19) exactly:∫ b

a

(lj(x))2 dλ(x) =
n∑
k=1

λk(lj(ξk))
2 = λj(lj(ξj))

2 = λj. (A.20)

Therefore the λj’s are all positive [9]. Golub and Strakos [10] give the following

explicit formula for the Christoffel numbers:

λj =
‖pn−1‖2w

pn−1(ξj)p′n(ξj)
. (A.21)

This formula follows from taking f = pn−1(x)pn(x)/(x− ξj) in the Gauss-Christoffel

quadrature and computing the integral in two different ways: from (A.27) we have

the equality∫ b

a

pn−1(x)
pn(x)

x− ξj
dw(x) =

n∑
k=1
k 6=j

λkpn−1(ξk)
pn(ξk)

ξk − ξj
+ λjpn−1(ξj)p

′
n(ξj)

=
n∑
k=1
k 6=j

λkpn−1(ξk)p
′
n(ξk)lk(ξj) + λjpn−1(ξj)p

′
n(ξj)

= λjpn−1(ξj)p
′
n(ξj).

But by the orthogonality of the pn’s, we have∫ b

a

pn−1(x)
pn(x)

x− ξj
dw(x) =

∫ b

a

(pn−1(x))2 dw(x) = ‖pn−1‖2w. (A.22)

Thus (A.21) is established.

Gauss’s idea of considering generating functions for the monomial errors can also

be extended to weighted integrals. Define the three functions

L(z) =

∫ b

a

1

z − x
dλ(x), ρn(z) =

∫ b

a

pn(z)

z − x
dλ(x), z /∈ [a, b]

σn(z) =

∫ b

a

pn(z)− pn(x)

z − x
dλ(x). (A.23)
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It is plain that we have the equality

pn(z)L(z) = σn(z) + ρn(z). (A.24)

Equation (A.24) represents pnL as the formal sum of a polynomial (σn) and a gener-

ating series involving only negative powers of z:

ρn(z) =

∫ b

a

1

z − x
pn(z) dλ(x)

=

∫ b

a

∞∑
k=0

xk

zk+1
pn(z) dλ(x)

=
∞∑
k=0

rk
zk+1

, rk =

∫ b

a

xkpn(x) dλ(x). (A.25)

This expansion, combined with the orthogonality of the pn(z), shows that ρn(z) =

O(z−n−1). Since pn has degree n, we conclude that

L(z)− σn(z)

pn(z)
=
ρn(z)

pn(z)
= O

(
1

z2n+1

)
. (A.26)

Following the example of Gauss, we decompose σn/pn into partial fractions, using the

nodes ξj as poles and the weights λj as residues, to obtain a formula for Qn:

σn(z)

pn(z)
=

n∑
j=1

λn
z − ξj

:= Qn

(
1

z − x

)
. (A.27)

We may obtain an exact formula for the Christoffel numbers by standard techniques

of complex analysis:

λj = lim
z→ξj

(z − ξj)
σn(z)

pn(z)
=
σn(ξj)

p′n(ξj)
. (A.28)

From (A.27) we now conclude that

ρn(z)

pn(z)
= L(z)− σn(z)

pn(z)
= I

(
1

z − x

)
−Qn

(
1

z − x

)
(A.29)

:= Rn

(
1

z − x

)
(A.30)

=
∞∑
k=0

Rn(xk)

zk+1
, (A.31)
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as before. The last expression, when combined with (A.26), also shows that the

monomial errors Rn(tk) vanish for 0 ≤ k ≤ 2n − 1, verifying the desired degree of

exactness.

We can also form a continued fraction expansion for L(z) as before by expanding

L− σn/pn in powers of 1/z:

L(z) =
b0

(z − a0)−
b1

(z − a1)−
b2

(z − a2)− · · ·

. (A.32)

The n-th convergent of this continued fraction will be σn/pn. As Gautschi notes

[9], this characterization of orthogonal polynomials as denominators of convergents of

continued fractions was very popular in the nineteenth century. Indeed, from standard

three-term recurrences for the numerators and denominators of continued fractions

one may easily derive the standard three-term recurrence for orthogonal polynomials

[30]. (The numerator σn is merely the second solution of the recurrence for pn.)

A.4 Gauss-Christoffel Quadrature with Preassigned Nodes

Finally, we discuss briefly the extension of Gauss-Christoffel quadrature to quadrature

rules with preassigned nodes. In such formulae, the quadrature sum Qn takes the form

Qn(f) =
m∑
j=1

ωjf(µj) +
n∑
j=1

λjf(ξj), (A.33)

where the ωj and λj’s are weights, the µj’s are nodes prescribed in advance, and the

ξj’s are nodes to be determined so that the rule has maximum degree of exactness. In

the special case of one preassigned node, the endpoint of the interval, these formulae

are referred to as Gauss-Radau quadrature (left endpoint) and Gauss-Lobatto

quadrature (right endpoint).
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Since there are m + 2n unknowns (ωj’s, λj’s and ξj’s), we would surmise this

maximum to be m + 2n − 1, and indeed that is the case. The following analogue of

Jacobi’s theorem holds for Gauss-Christoffel quadrature rules with preassigned nodes

[5]:

Theorem A.2. The quadrature rule given by (A.33) has degree of exactness m+2n−1

iff it has degree of exactness m+ n− 1 and the node polynomial

ω(x) =

(
n∏
j=1

(x− ξj)

)(
m∏
j=1

(x− µj)

)
:= r(x)s(x) (A.34)

is orthogonal (in the inner product induced by λ(x)) to all polynomials of degree at

most n− 1.

The proof of this theorem is similar to that of Jacobi’s Theorem (Theorem A.1).

The nodes ξj are once again the zeros of orthogonal polynomials, only now the

polynomials are orthogonal with respect to the weight s(x)λ(x) instead of λ(x).

Christoffel derived an expression for these polynomials in terms of (monic) poly-

nomials orthogonal with respect to λ(x):

Theorem A.3 (Christoffel’s Theorem). Let {pn(x)} be a family of orthogonal poly-

nomials on [a, b] with respect to the weight λ(x). Let s(x) be defined as in (A.34)

and suppose that the µj’s are distinct. Suppose that {qn(x)} is a family of orthogonal

polynomials on [a, b] with respect to the weight s(x)λ(x). Then

s(x)qn(x) =

∣∣∣∣∣∣∣∣∣∣∣∣

pn(x) pn+1(x) . . . pn+m(x)

pn(µ1) pn+1(µ1) . . . pn+m(µ1)
...

...
. . .

...

pn(µm) pn+1(µm) . . . pn+m(µm)

∣∣∣∣∣∣∣∣∣∣∣∣
. (A.35)

For the proof of this theorem, see [5].
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Appendix B

BASIC ARITHMETIC OPERATIONS IN

FINITE-PRECISION

In this chapter we review some elementary facts about finite-precision arithmetic.

We will remain faithful to the treatment of Wilkinson’s text [32]. We will only examine

the case of floating-point arithmetic; similar statements can be made for fixed-point

arithmetic.

Throughout this section, A will denote an m × m matrix, x and y will denote

m × 1 vectors, and c will denote a scalar. Furthermore, ν will denote the maximum

number of non-zero elements in any row of A. We will adopt the notation fl(x) to

denote the floating-point representation of x. We will also engage in a slight abuse

of notation and use ε to refer to any quantity smaller than the machine precision.

Finally, we will assume that the quantities

σ := ‖A‖ and βσ := ‖|A|‖ , (B.1)

where |A| = |aij|, are known a priori.

First, we recall how floating-point arithmetic affects basic operations. Here we

assume that intermediate results are stored in an “accumulator” of the same size

as the operands. This assumption is valid for double-precision IEEE floating-point

arithmetic, which is the standard for numerical calculations [19].

If x is the exact representation of a quantity, then fl(x) = x(1 + ε), where ε is the

machine precision. The floating-point sum/difference of two floating-point numbers

x1 and x2 is given by

fl(x1 ± x2) = (x1 ± x2)(1 + ε).
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For multiplication of two floating-point numbers x1 and x2 we have

fl(x1 ∗ x2) = (x1 ∗ x2)(1 + ε),

while for division, we have the analogous statement

fl(x1/x2) = (x1/x2)(1 + ε),

provided x2 is not zero. Division by zero is typically defined in floating-point arith-

metic either to return a value indicating infinity or to signal an error to the program.

It is then the responsibility of the program to decide how the attempted division

should be handled.

Our first three propositions establish relations between basic matrix and vector

operations and their finite-precision counterparts.

Proposition B.1.

fl (fl(x)− fl(c) fl(y)) = (x− cy) + δz, where ‖δz‖ ≤ (‖x‖+ 2|c| ‖y‖) ε (B.2)

Proof.

fl (fl(x)− fl(c) fl(y)) = (x− cy(1 + ε)) (1 + ε) = (x− cy) + (x− 2cy) ε,

since finite-precision quantities are known only to O(ε) accuracy;

= (x− cy) + δz,

where

δz ≤ (‖x‖+ 2|c| ‖y‖) ε.

Proposition B.2.

fl (fl(y)∗ fl(x)) = (y + δy)∗ x where ‖δy‖ ≤ mε ‖y‖ . (B.3)



70

Proof. From the definition of the inner product, we have

fl (fl(y)∗ fl(x)) = fl (fl(y1) fl(x1) + · · ·+ fl(ym) fl(xm)) .

We avail ourselves of the following trick [32]. Let fj = fl(fl(yj) fl(xj)) and define the

partial sums sj by s1 = f1 and sj = fl(sj−1 +fj). For each j we have fj = yjxj(1+ ε)

and sj = (sj−1+fj)(1+ε) in finite-precision. Combining these two facts and inducting

on j we have

s1 = y1x1(1 + ε)

s2 = [y1x1(1 + ε) + y2x2(1 + ε)] (1 + ε) = (y1x1 + y2x2) (1 + ε)2

...

sm = y1x1(1 + ε)m + y2x2(1 + ε)m + · · ·+ ym−1xm−1(1 + ε)3

+ ymxm(1 + ε)2

= y∗x + δy∗x,

where δy satisfies

‖δy‖ =
∥∥∥[my1 my2 . . . 2ym

]∗
ε
∥∥∥ ≤ mε ‖y‖ ,

as claimed.

Proposition B.3.

fl (fl(A) fl(x)) = (A + δA) x, where |δA| ≤ νε|A|. (B.4)

Proof. Let Ai denote the i-th row of A. In exact arithmetic we have

Ax =
[
A1x . . . Amx

]T
.

We have already seen how finite-precision arithmetic affects inner products: in the

proof of Proposition B.2, we showed that

fl (fl(Ai) fl(x)) = (Ai + δAi) x,
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where the error term δAix is given by

δAix = [mAi1x1 +mAi2x2 + · · ·+ 2Aimxm] ε.

Some of these entries, however, may be zero, so it is not necessary to compute them

all. If ν is the maximum number of non-zero entries in any row, then we perform at

most ν multiplies and ν−1 additions in the process of computing Aix. Therefore, we

can bound |δAi| by νε|Ai| using the same argument as in the proof of the previous

proposition. It follows that |δA| ≤ νε|A|.

When (B.4) is combined with our assumption (B.1), we get the bound

‖δA‖ ≤ ‖ |δA| ‖ ≤ νε ‖|A|‖ = νβεσ. (B.5)

Our next proposition details how finite-precision arithmetic affects calculations

with norms.

Proposition B.4. Assume that taking square roots introduces a relative error no

greater than ε. Then

c = + fl
(√

fl(x)∗ fl(x)
)

=

(
1 +

1

2
(m+ 2)ε

)
‖x‖ (B.6)

y = fl

(
fl(x)

c

)
= diag (1 + ε) x/c (B.7)

y∗y = 1 + (m+ 4) ε. (B.8)

Proof. From Proposition B.2 we have

fl
(√

x∗x
)

=
√
fl (fl(x)∗ fl(x)) + ε ‖x‖ ≤

√
1 +mε ‖x‖+ ε ‖x‖ .

By Bernoulli’s theorem (or a simple binomial formula estimate) we have the inequality
√

1 + u ≤ 1 + 1
2
u, from which (B.6) follows immediately. The second statement

follows immediately from our earlier discussion of how floating-point arithmetic affects
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division. Finally,

y∗y = (x∗ diag (1 + ε) /c) (diag (1 + ε) x/c)

= (1 + 2ε)x∗x/β2 = (1 + 2ε)

[
1 + ε

(
m+ 2

2

)]−2
= (1 + 2ε) (1 + (m+ 2)ε)) = 1 + (m+ 4) ε.
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Appendix C

PROOF OF PROPOSITION 4.5

Proposition C.1. Suppose that

4n {3 (m+ 4) ε+ (7 + νβ) ε} � 1. (C.1)

Then the bound

‖un‖ ≤ σ {1 + 2n [3 (m+ 4) ε+ (7 + νβ) ε]} (C.2)

holds at each step of Algorithm 4.1.

Proof. The proof of this statement is seemingly complicated, but it boils down to

repeated use of the results we have established so far.

First, we must establish some intermediate results. From (4.25) we have

‖un + δun‖2 = ‖Aqn − βnqn−1‖2 = ‖Aqn‖2 + β2
n ‖qn−1‖

2 − 2βnq
∗
nAqn−1 (C.3)

and from (4.27)

βnq
∗
nAqn−1 = βnq

∗
n (βnqn + αn−1qn−1 + βn−1qn−2 + fn−1) = β2

n + δβn.

The error term δβn is given explicitly by the formula

δβn = β2
n(q∗nqn − 1) + βnαn−1q

∗
nqn−1 + βnβn−1q

∗
nqn−2 + βnq

∗
nfn−1. (C.4)

It is clear from this equation that we will need a bound on quantities of the form

q∗nqn−2. An easy way to do this is the following trick due to Paige [24]. First compare

the (j − 1, j)-elements of each side of (4.34) to obtain the identities

α1ρ12 − α2ρ12 − β3ρ13 = η12 (C.5)

βj−1ρj−2,j + (αj−1 − αj)ρj−1,j − βj+1ρj−1,j+1 = ηj−1,j, j = 2, . . . , n. (C.6)
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Notice the occurrence of the terms of the form ρj−2,j in these identities. If we now

multiply both sides of (C.5) and (C.6) by βj and define

ζj = (αj−1 − αj) βjρj−1,j − βjηj−1,j, j = 2, . . . , n, (C.7)

we obtain the recurrence

βjβj+1ρj−1,j+1 = βj−1βjρj−2,j + ζj.

It follows immediately that βjβj+1ρj−1,j+1 = ζj + · · ·+ ζ2.

Using several of the estimates we have developed in the previous subsections, we

see that

|ζj| ≤ 2 [(1 + νβ)σ + (3n+ 18)µj]µjε.

Hence we obtain the bound

|βj||βj+1||ρj−1,j+1| ≤ 2(j − 1) [(1 + νβ)σ + (3n+ 18)µj]µjε. (C.8)

Using the above results with (4.25) we get

‖un‖2 = ‖Aqn − βn−1qn−1 + δun + δAqn‖2

= ‖Aqn‖2 + β2
n(‖qn−1‖2 − 2) + ‖un‖2 + 2β2

n

− 2(δun)∗ (Aqn − βnqn−1)− 2βnq
∗
nAqn−1

= ‖Aqn‖2 + β2
n(‖qn−1‖2 − 2) + δβ′n, (C.9)

where the error term δβ′n satisfies

|δβ′n| =
∣∣‖un‖2 + 2β2

n − 2βnq
∗
nAqn−1 − 2(δun)∗ (Aqn − βnqn−1)

∣∣
≤ {4(n− 1)(1 + νβ)σ + [(2n− 3)6(m+ 6) + 4]µn}µnε. (C.10)

We are now ready to prove Proposition 4.5. Let

µ := max(µn, σ).
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If µ = σ, then ‖uj‖ ≤ σ for each j ≤ n, so (4.39) clearly holds. On the other hand,

if µ = µn, then for j = 1, . . . , n we have

‖uj‖2 = ‖Aqj‖2 + β2
j (‖qj−1‖

2 − 2) + δβ′j

≤ σ2 (1 + (m+ 4)ε) + (1 + (m+ 4)ε) (1 + (4m+ 12)ε)µ2
n−1

+ {4(n− 1)(1 + νβ)σ + [(2n− 3)6(m+ 6) + 4]µn}µnε

≤ σ2 + 4n [(7 + νβ) + 3(m+ 4)]µ2ε.

Thus, since the above bound holds for j = 1, . . . , n, we have

µ2 ≤ σ2 + {4n ((7 + νβ) + 3(m+ 4)) ε}µ2,

which implies

µ2 ≤ σ2

1− {4n ((7 + νβ) + 3(m+ 4)) ε}
= σ2 (1 + {4n ((7 + νβ) + 3(m+ 4)) ε})

to first order, since we assumed (C.1). This proves (C.2).
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