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Applied Mathematics

Financial asset returns and fundamental factor exposure data often contain outliers, observa-
tions that are inconsistent with the majority of the data. Both academic finance researchers
and quantitative finance professionals are well aware of the occurrence of outliers in finan-
cial data, and seek to limit the influence of such observations in data analyses. Commonly
used outlier mitigation techniques assume that it is sufficient to deal with outliers in each
variable separately. Such approaches can easily miss multivariate outliers, observations that
are outlying in higher dimensions without being outlying in any individual variable. Robust
statistical methods are a better approach to building reliable financial models in the presence
of multivariate outliers, but they are unfortunately underused by academic researchers and
practitioners.

This dissertation motivates greater use of robust statistical methods in quantitative fi-
nance research via two applications to outlier detection and asset pricing research. We first
demonstrate the use of robust Mahalanobis distances (RSDs) based on the minimum co-
variance determinant (MCD) robust mean and covariance estimates to detect multivariate
outliers in asset returns time series data and fundamental factor exposure data. We improve
upon a result of Hardin and Rocke for approximating the distribution of such distances, and
use our result to improve the accuracy of the Iterated Reweighted MCD (IRMCD) technique
of Cerioli for testing MCD-based RSDs with sample sizes as small as n = 60 and with high-



efficiency versions of the MCD. We show that, with our improvements, outlier detection via
RSDs combined with IRMCD is more accurate than both common univariate approaches
and multivariate Mahalanobis distances based on the classical sample mean and covariance
estimates.

Second, we illustrate the benefits of robust MM-regression for empirically testing factor-
based asset pricing models by revisiting the classic 1992 asset pricing study of Fama and
French with data updated through December 2015. Our analysis using cross-sectional robust
MM-regression reveals the surprising extent to which influential outliers, mainly small firms
with isolated large returns, drove some of the main conclusions of the Fama and French
study. Specifically, we demonstrate that the relationship between average returns and firm
size is positive for nearly all stocks. The negative relationship found by Fama and French
and most other asset pricing studies arises from a small percentage, usually less than 2%,
of small stocks each month with unusually large returns. Similarly, we find a significant
and complex relationship between average returns and firm betas, in contrast to Fama and
French’s assertion of the lack of such a relationship. We furthermore find that there is a non-
trivial interaction between beta and size that must be included in an asset pricing model to
fully explain the relationship between average returns and beta. Finally, while we confirm the
positive relationship between average returns and firm book-to-market ratios found by Fama
and French, we also confirm results due to Loughan demonstrating that this relationship is
only significant in smaller stocks. Overall our robust regression analysis demonstrates the
danger of relying solely upon classical statistical methods, such as least squares regression,
in empirical asset pricing studies and encourages the use of modern robust methods in asset

pricing research.
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Chapter 1

INTRODUCTION
1.1 Overview of Robust Statistics

Robust statistical methods are statistical procedures which are designed to perform well at an
assumed model and at “small” deviations from this model. Such deviations are commonly due
to outliers in the data or to misspecification of the underlying mechanism for the data. The
field of robust statistics was developed largely in response to problems with classical methods
(such as sample means and covariances) in the presence of outliers and asymmetric, heavy-
tailed distributions. Robust inference in such situations can be more reliable than classical
inference. Robust methods also serve a valuable diagnostic role: if one fits a model to data
using non-robust and robust methods and the answers differ significantly, one immediately
knows that there are some unusual observations that need to be investigated before any
conclusions are drawn from the research. John Tukey (1979) expressed this sentiment well:
“Just which robust and resistant methods you use is NOT important—what IS important is
that you use SOME. It is perfectly proper to use both classical and robust /resistant methods
routinely, and only worry when they differ enough to matter. BUT when they differ, you
should think HARD.”

Robust statistical methods have been studied in the statistical community since the
1960s, starting with the foundational papers of Tukey (1960) introducing the concept of
efficiency robustness; Huber (1964, 1973) introducing the notion of an M-estimator; and
Hampel (1968, 1974) introducing idea of the influence function. Early texts such as Huber
(1981) and Hampel et al. (1986) cover the theoretical and historical underpinnings of robust
statistics, while Rousseeuw and Leroy (1987) focused entirely on robust regression. Over

the ensuing decades there have been substantial advances in the theory underlying robust



methods, as well as significant computational improvements. Several new texts offer the
novice an easy path to learning not only the basics of robust statistics but also the latest
advances. Maronna et al. (2006) provides broad coverage of modern robust statistical theory
and methods, including discussion of bias robust methods and advances in computational
techniques. The forthcoming update (Maronna et al., 2017) will detail important new results
that have appeared in the literature since 2006. The classic book of Huber (1981) has also
been updated (Huber and Ronchetti, 2009) to reflect new results since the early 1980s.

At the heart of robust methods is the tradeoff between bias and variance. If we evaluate
the performance of an estimate 6 of a univariate parameter # by its mean squared error
(MSE), we can decompose the MSE into two terms: the variance of the estimate and the
square of the bias of the estimate. Many robust methods seek to control one or both of
these measures (possibly only asymptotically for large samples) in order to provide reliable
estimates of # in the presence of outliers or heavier-than-expected tails. For instance, we
might design an estimator that is minimax bias optimal, in the sense that it minimizes the
largest possible bias of the estimator over some set of possible data distributions. This also
leads to the concept of the breakdown point of an estimator, which is roughly the fraction of
observations that can be completely corrupted while still keeping the maximum bias of the
estimate finite. Section 3.5 of Maronna et al. (2006) provides further background on bias
optimality, as does Section 4.2 of this dissertation.

If the estimate is unbiased, then variance is the only quantity we need to control. Ty-
pically, there is a minimum possible asymptotic variance for an estimator in a given class
of estimates (e.g., provided by the Cramér-Rao lower bound), so it is more convenient to
control the variance of our robust estimate relative to this lower bound. The efficiency of
a candidate estimate, relative to another, “optimal” estimate, is defined as the ratio of the
optimal estimate’s variance to that of our candidate estimate’s variance. In common robust
estimation situations the optimal estimate is the maximum likelihood estimate when the
data are uncontaminated (e.g., arise from a multivariate normal distribution).

Generally, though, our set of possible estimators will be biased for €, so we must balance



bias and variance/efficiency in selecting an estimator. We can find estimators that have the
desired balance via optimization. For example, we can minimize the maximum bias of the
estimate subject to a constraint on efficiency when the data arise from a multivariate normal
distribution with no contamination. Sections 3.4-3.6 of Maronna et al. (2006) provide further
details on bias, efficiency, and the bias-efficiency tradeoff, as well as corresponding definitions
for multivariate estimators. We will also give a brief overview of these topics in Section 4.2

of this dissertation.

The tradeoff between bias and efficiency has been key to the design of robust methods
for regression and covariance estimation, the two main tools we will use throughout this
dissertation. The need for a robust regression methodology comes from the known poor
performance of least squares (LS) regression in the presence of outliers in either the response
or explanatory variables. A single outlier can lead to arbitrarily large bias in the estimated
regression coefficients 8 and hence the LS estimator has breakdown point 0 (Maronna et al.,
2006). Even if such an outlier does not lead to the catastrophic failure of the estimated
coefficients, it often yields very misleading regression results. The sensitivity of the LS
estimator to outliers is a consequence of its loss function p(u) = u?, which magnifies the
importance of large residuals in the LS objective (the sum of the squared residuals). This
allows the maximum asymptotic bias of the LS estimator to become arbitrarily large. Many
attempts at improving this situation have focused on minimizing the sum of a different
function of the residuals, one that puts less weight on very large residuals. Huber (1973)
introduced the concept of a regression M-estimator, an estimator for 3 that minimizes the
sum of a function p(u) of the residuals that grows more slowly than the quadratic u* or is

bounded for large values of w.

Huber’s original proposed p(u) function (detailed later in Section 4.2) and similar functi-
ons that are not bounded are robust to outliers in the response variables, but not in the
explanatory variables. Such estimates still have breakdown point 0 like the LS estimate. In
fact, Martin et al. (1989) showed that loss functions must be bounded to limit the bias that

could be caused by outliers. This shortcoming of early M-estimators led to the development



of other robust regression approaches, such as least trimmed squares (Rousseeuw, 1984) and
S-estimates (Rousseeuw and Yohai, 1984), which can have breakdown points as high as 1/2
and hence can be very robust to outliers in any of the variables. These estimators were not
very efficient, however, meaning that the standard errors of the resulting regression coeffi-
cient estimates would be much larger than those of the LS estimates when the residuals were

normally distributed.

The regression MM-estimator, developed by Yohai (1987) and refined by Yohai et al.
(1991), offered a better solution to these problems. The MM-estimator combines a high-
breakdown point initial S-estimate with a high efficiency final M-estimate. The choice of
loss function p(u) in each step is key to obtaining an estimator with both properties. Yohai
and Zamar (1997) and Svarc et al. (2002) derived a minimax bias optimal loss function that
minimizes the maximum asymptotic bias (under certain types of departures from normality)
while ensuring a minimum efficiency when the data are normally distributed. With proper
choice of tuning constants the resulting MM-estimator can have breakdown point 1/2 and
high efficiency. The MM-estimator is available in common statistical software packages such
as R, SAS, and Stata, and we will use it in Chapter 4 extensively. (Section 2 of that chapter
provides a more detailed explanation of the MM-estimator and its properties.)

Like the LS estimate of the regression coefficents, the sample covariance matrix is known
to be susceptible to outliers in the observations. One can trace a path through the develop-
ment of robust estimates of the dispersion matrix similar to that of robust regression. Ma-
ronna (1976) developed multivariate M-estimators of dispersion by generalizing the structure
of the maximum likelihood estimator of the dispersion matrix of an elliptical distribution.
This estimator unfortunately has low breakdown point (at most 1/(v + 1) for v-dimensional
data) as shown by Huber (1977, 1981) and Stahel (1981). The search for higher break-
down point estimators lead to several estimators whose goal is to minimize some measure
of the dispersion of the Mahalanobis squared distances (MSDs) of the observations. The
minimum volume ellipsoid estimator of Rousseeuw (1983, 1984) minimizes the median of

the MSDs. Davies (1987) introduced S-estimators of dispersion, which minimize a smooth



bounded function p(u) of the MSDs. Rousseeuw (1985) introduced the minimum covariance
determinant (MCD) estimator, which minimizes a trimmed mean of the MSDs. The MVE,
S-estimators, and the MCD can all be tuned to yield an estimator with breakdown point
1/2. The MVE is very inefficient, however, and is no longer commonly used. The MCD
is more efficient than the MVE for the same choice of tuning parameter (the subset size),
but one must still sacrifice some efficiency for higher breakdown point. The efficiency of
an S-estimate depends on the choice of loss function p(u). (Chapter 6 of Maronna et al.
(2006) provides more details on all of these estimators.) These estimators are also available

in common statistical packages.

High-breakdown point robust dispersion estimators are commonly used in outlier de-
tection settings, particularly for detecting outliers via MSDs. Of the MVE, S-estimators,
and the MCD, the MCD has historically been the most commonly used esitmator for this
purpose, due to a wealth of literature on MCD-based MSDs and the existence of a fast ap-
proximate algorithm to compute the MCD (Rousseeuw and van Driessen, 1999). It is not
always the best dispersion estimator of the lot, however: Maronna et al. (2006) show, via a
simulation experiment in their Section 6.8, that for certain choices of p(u) the corresponding
S-estimator offers a better balance of bias and variability than the MCD for estimating lo-
cation and dispersion under a point-mass contaminated multivariate normal model. Outlier
detection using MSDs based on S-estimators might therefore be more accurate than detection
with MCD-based MSDs. In practice, however, the sampling distribution of MSDs based on a
robust estimate of dispersion has only been well-studied in the MCD case. Work by Hardin
and Rocke (2005), Cerioli et al. (2009), Cerioli (2010), and others has led to a calibrated
MCD-based detection methodology that has the correct false positive rates for testing ob-
servations for outlyingness. This methodology does not obviously apply to distances based
on S-estimators. We therefore employ these calibrated MCD-based robust squared distances

in our outlier detection work (Chapters 2 and 3).



1.2 DMotivation for this Dissertation

The volatile nature of financial markets ensures that financial data will almost always contain
some observations that are seemingly inconsistent with the rest of the data, be they data
errors or legitimate but one-time events such as market crashes, unanticipated mergers, and
natural disasters. This is supported by a wealth of empirical evidence of outliers in asset
returns data and in factor exposures data, e.g., see Chapter 6 of Scherer and Martin (2005)
or Martin et al. (2010), as well as numerous research papers proposing non-normal distri-
butional models for asset returns.! Quantitative finance professionals involved in portfolio
construction and management are well-aware of the presence of outliers in financial data and

the damage they can potentially cause.

Given the maturity of robust statistical methods and the availability of high-quality
software implementations, one might expect that robust methods would be part of every
practitioner’s modeling toolbox. The quantitative finance community, however, has histori-
cally been largely unaware of robust statistical methods and/or unsure of how to use them.
Outlier mitigation methodologies in quantitative finance have been limited to univariate ap-
proaches such as trimming or Winsorizing each variable separately. Such one-dimensional
outlier mitigation methods are not adequate for dealing with multivariate outliers, that is,
observations that are outlying in higher-dimensional views of the data without being outlying

in any specific marginal variable.

Robust statistical methods have not been used very much in academic financial research

either, except in very simple single factor models.? While there are a substantial number

1Some of the many models in the literature include mixtures of normal distributions (e.g., McNeil et al.
(2005)), skewed-t distributions (e.g., Azzalini and Capitanio (2014)), and a-stable distributions (e.g.,
Rachev and Mittnik (2000)).

2Tt is difficult to estimate how many quantitative finance and econometrics papers use robust statistics

due to the fact that the word “robust” has several different meanings in finance and econometrics. For
example, standard errors can be robust to heteroskedasticity and autocorrelation without being robust to
outliers. A methodology might be described as “robust” to extreme values without being robust in the
statistical sense we use here.



of academic papers applying robust regression to the estimation of CAPM betas,® robust
regression has seen very little published use in the empirical evaluation of multiple factor-
based asset pricing models. The three papers Knez and Ready (1997), Chou et al. (2004),
and Garza-Gomez et al. (2001), which all use least trimmed squares regression, as well as
the recent paper Winker et al. (2011) using least median squares regression, are the only
examples of which we are aware that apply robust regression in an empirical asset pricing

context.?

In light of the above observations, a high-level goal of this dissertation is to encourage
more widespread use of robust statistical methods in quantitative finance. One step towards
this goal is to provide a reliable robust method for detecting multivariate outliers in the type
of asset returns and factor exposure data used for portfolio management and construction and
in empirical asset pricing studies. We do this via the introduction of an improved method for
detecting multivariate outliers and the demonstration of its superiority to existing techniques.
We illustrate the utility of our method for detecting unusual times in multivariate returns

data and unusual assets in factor exposure data.

We then turn our attention to applications of robust regression to empirical asset pricing
studies. We use MM-regression to show how outliers in cross-sectional returns and factor

exposures can distort risk premia estimated via least squares. In some cases, our conclusions

3Early work in this area by Sharpe (1971) and Cornell and Dietrich (1978) employed the least absolute

deviation regression. Connolly (1989) and Bowie and Bradfield (1998) used regression M-estimators in
their studies of CAPM betas. More recent papers by Martin and Simin (2003) and Bailer et al. (2011) use
regression MM-estimators. Also worth mentioning are the Theil-Sen robust regression methodology (Theil,
1950a,b,c; Sen, 1968) used by Philips (2012) and a Bayesian approach due to Genton and Ronchetti (2008)
that offers a compromise between a robust estimate of beta and the least squares estimate. The Theil-Sen
regression only has a breakdown point of 29.3% in a single factor model context, however. Siegel (1982)
discusses a robust regression methodology based on repeated medians that has an asymptotic breakdown
point of 50%.

4Robust statistical methods have been used more widely in economics and econometrics, though they
are still not commonplace. Zaman et al. (2001) and Cizek and Hérdle (2008) provide (somewhat dated)
surveys of robust regression in econometrics. Sapra (2003) presents three applications of the S-estimator of
regression. Bramati and Croux (2007) looks at applications of robust regression to panel data. Atkinson
(2009) revisits Zaman et al. (2001) using the forward search method for outlier detection. Colombier
(2009) applies MM-regression to an investigation of fiscal policies.



from MM-regression about whether certain risk factors are priced are very different from
those obtained using least squares. Overall, the results of our analyses speak to the value of
robust methods in quantitative financial research, and will hopefully lead to greater adoption

of such methods by the academic and industry communities.

1.3 Multiple Factor Models

Multiple factor models are linear regression models with one of the following three forms.

e Time series factor models are based on observable time series of changes in macroe-
conomic measures or returns on market indices, hedge funds, or other portfolios. In
the case of macroeconomic measures, these time series factor models are usually called

macroeconomic factor models.

e Cross-sectional factor models are based on unobservable returns for firm characteris-
tics such as market capitalization, industry sector, country of domicile, or accounting
measures such as sales and the ratio of earnings to price. Such factors are used in asset

pricing applications, portfolio optimization, and risk management.

e Latent or statistical factor models are based on factors that may not correspond to
any recognizable financial measure, but provide a meaningful statistical explanation of

asset returns.
The general form of a factor model is

Tig = o + Brifie + Boifor + -+ Brifre + € €ir ~ N(0, 01'2)~ (1.1)

Here 7;; is the known return on asset ¢, ¢ = 1,..., N, at time ¢, ¢ = 1,...,T. The intercept,
a;, captures the expected asset return when the factor returns are zero or when the factor
returns are not linearly related to the asset returns. f;, is the return on the kth factor at
time ¢. [y, is the factor beta (also known as factor loading or factor exposure) for asset i

on the kth factor. Finally, the residual term ¢;; represents an asset-specific return that is



not accounted for by the model. Further details on the model and its assumptions can be
found in any standard investment management or financial economics textbook, e.g., Zivot
and Wang (2003).

In the case of a macroeconomic multiple factor model, the fj, series are known, and
multiple linear regression across time for each asset is used to estimate the unknown coeffi-
cients f3; of the model. For fundamental factor models, the coefficients 3 ; are known, and
multiple linear regression across assets for each time is used to estimate the unknown factor
returns fi,. In a statistical factor model, neither the factor betas nor the factor returns
are known a priori. Principal components analysis and related techniques are often used to
compute both pieces of the model simultaneously. Combinations of these types of models are
also possible, though they are more challenging to estimate. Stroyny (2005) provides some
guidance on how to build such a model.

Factor models can be “single factor models” if asset returns are assumed to have only one
common driver of risk/return, or “multiple factor models” if there is more than one factor.
The Capital Asset Pricing Model (CAPM), developed by Sharpe (1964), Treynor (1961),
Lintner (1965), and Mossin (1966), is the prototypical single factor model, with the return
on the market portfolio serving as the sole factor.

Multiple factor models are popular for forecasting asset returns and asset risks (e.g., as

® as well as explaining the drivers of past portfolio

inputs to a portfolio construction process),
risk and performance. Factor models reduce the number of parameters to estimate when
forecasting returns or estimating asset covariances. It is often easier for the practitioner
to formulate opinions about the future direction/level of the factors (e.g., oil prices or a
firm’s revenue) than about the assets themselves. Furthermore, the inherent dimensionality
reduction of a factor model improves the numerical stability of covariance estimation in high

dimensions. For example, the sample covariance matrix of 1000 assets can be difficult to

compute due to its size and too numerically unstable to be useful. The covariance matrix

°See, for instance, the books Zivot and Wang (2003); Grinold and Kahn (2000); Litterman (2003); Tsay
(2005); Elton et al. (2006); Chincarini and Kim (2006); Connor et al. (2010); Campbell et al. (1997).
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could be estimated in a much more stable way using an estimated covariance matrix for a
small number of factors and the structure of the factor model.

Least squares regression is commonly used to estimate factor models models due to its
ease of use and optimality—the least squares estimate of the vector of regression coefficients
B is the best linear unbiased estimator (BLUE) of 8 (as a consequence of the Gauss-Markov
theorem), and has the smallest variance of any unbiased estimate of 8 when the residuals
are normally distributed.® Least squares regression, however, is known to be sensitive to
the presence of outliers in the independent and dependent variables (e.g., see Ruppert and
Carroll (1980); Koenker (1982); Rousseeuw and Leroy (1987)). This sensitivity arises from
the fact that the objective of least squares is to minimize the sum of the squared residuals.
A large residual due to an outlier will make the sum of all the squared residuals much larger,
so the optimization algorithm will adjust the regression coefficients to reduce the size of this
residual. In the process, other residuals may become larger, meaning the resulting regression
model fits those observations worse than it would if the outlier were not there.

Outliers can arise quite easily in the factor model estimation process. For instance, in the
CAPM both the historical asset return series r; and the historical market return series r,, ;
might contain outliers due to asset-specific events and market-wide events. These outliers
might distort the estimated beta to the extent that the fitted model is not representative
of the behavior of the asset at any point in time. As another example, fundamental factor
models often have many factors that are derived from the same quantities, e.g., several ratios
of accounting measures to stock price. A price outlier can thus lead to an outlier in several
variables. Such multivariate outliers can distort the estimated factor model, leading to poor
return forecasts and a misallocation of risk between the common factors and the asset-specific
residuals.

We can consider replacing least squares regression in the factor model estimation process

with some form of robust regression to limit the impact of outliers. For asset returns forecas-

Briefly, the best linear unbiased estimator of 3 has the smallest variance of all linear unbiased estimators

of 3.
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ting, several papers by John Guerard and colleagues (Bloch et al., 1993; Guerard et al., 2015;
Guerard, 2016; Guerard et al., 2016) have explored the use of robust regression based on the
Tukey biweight function. (We will use one of these factor models in Chapter 3.) On the
other hand, there is little published work exploring how to construct multiple factor models
for risk forecasting using robust regression. The commercial risk model vendor Axioma uses
a Huber M-estimator to construct their Axioma Robust Risk Model (Guerard, 2017). The
Huber M-estimator is not robust to outliers in the independent variables, however.
Another approach to dealing with potential outliers in single and multiple factor models
is to detect outliers in the independent variables (the factor returns or factor betas) using an
outlier detection method, and then remove these outliers or shrink them to more reasonable
values. For example, MSCI uses Winsorization in the calculation of their style-based equity
indices (MSCI, 2016, page 10). Stephan et al. (2001) constructed a multiple fundamental
factor model for European stocks using the skipped Huber method applied to each factor
beta. Approaches like these are commonly used by practitioners but only address extreme
observations one variable at a time. They do not address the problem of multivariate outliers

that, as we shall see in Chapter 3, are often present in the data.

Empirical Asset Pricing Models

Asset pricing models are used to estimate a “fair” value for an asset that compensates an
investor for the risk of the asset. There are many pricing models based on single and multiple
linear factor models. CAPM is the most well-known single factor asset pricing model. The
Arbitrage Pricing Theory (APT) developed by Ross (1976) and Roll and Ross (1980, 1984)
and the 3-factor model of Fama and French (1993) are common examples of multiple factor
asset pricing models.

The main focus of empirical asset pricing is developing and testing such models on obser-
ved market data. For example, if CAPM is true, stock returns and stock betas will be linearly
related. We might therefore validate CAPM by regressing stock returns on their betas and

testing whether the intercept and slope in the regression are signficantly different from zero.
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A significant non-zero intercept would suggest there is some factor other than beta that is
needed to explain the variability in stock returns. This idea is the heart of the Fama and
MacBeth (1973) or cross-sectional regression approach to testing factor-based asset pricing
models: at each point in time, stock returns are regressed on their factor betas, resulting in a
time series of regression coefficients. We compute averages of the regression coefficients and
test the average coefficients for signficance. If the average regression coefficient on a given
factor beta is not significant, the corresponding factor was not relevant for pricing returns
over the time period considered.

The original Fama and MacBeth (1973) study was designed to test CAPM. Throughout
the late 1970s and 1980s, many researchers found that beta could not fully explain the cross-
section of U. S. stock returns, contrary to the assertion of CAPM. Other firm characteristics
such as firm size (Banz, 1981; Keim, 1983), the book-to-market ratio (Stattman, 1980; Ro-
senberg et al., 1985; Chan et al., 1992),” firm leverage (Bhandari, 1988), and the ratio of firm
earnings to stock price (Basu, 1983) were shown to have clear influence on average returns.
These other characteristics were known as “anomalies” in that they did not fit the CAPM.
In a famous paper, Fama and French (1992) used cross-sectional least squares regression to
investigate the above CAPM anomalies more extensively. They concluded that firm size and
the book-to-market ratio were the most important missing factors from the CAPM (out of
the four mentioned above), and used this insight to develop their 3-factor asset pricing model
in Fama and French (1993).

Since least squares regression is not robust to outliers, however, it is possible that the
empirical tests of an asset pricing model using the Fama-MacBeth technique will be distorted
by outliers. Replacing the least squares regression with some form of robust regression would
render an asset pricing study less susceptible to erroneous conclusions driven by outliers.
Indeed, Knez and Ready (1997) used an early robust regression method, least trimmed

squares regression, to illustrate the effects of outliers in the Fama and French (1992) study.

"The book-to-market ratio is the ratio of a firm’s book equity (i.e., its value from an accounting standpoint)
to its market value.
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While Fama and French (1992) found a negative relationship between average returns and
firm size in the U. S., Knez and Ready (1997) determined that the relationship is positive for
most stocks. Furthermore, they found that a small number of firms and a small number of
months with unusual returns were responsible for the negative relationship found by Fama
and French. Knez and Ready’s findings were confirmed over a longer time period by Chou
et al. (2004), also using least trimmed squares in U.S. equity markets through 2001. Garza-
Gomez et al. (2001) applied a similar cross-sectional least trimmed squares regression to the
Japanese equity markets through 1995, and also found that the relationship between average
returns and firm size was strongly driven by a handful of unusual firms and time periods.
Least trimmed squares regression is very robust to outliers, but is not very efficient com-
pared to least squares. Other robust regression approaches like MM-regression offer a better
compromise of robustness to outliers and efficiency when the data are normally distributed.
Bailer and Martin (2007) explored the use of cross-sectional robust MM-regression for testing
factor-based asset pricing models, but there does not seem to be any other documented use
of MM-regression in the asset pricing literature. We will use MM-regression in Chapter 4 to

revisit the Fama and French (1992) study and extend the analysis through 2015.
1.4 Multivariate Outlier Detection

Multivariate outlier detection has recently found its way into financial applications, albeit
in a limited capacity. The few papers that have been published in this area have used
Mahalanobis squared distances for outlier detection. The Mahalanobis squared distance
(MSD) measures how far away an observation is from the center of the data, taking into
account the relative dispersion of each variable (by weighting distances from the center using

the inverse square root of the covariance matrix). Formally, the MSD is defined as
D’ =(x—p)'E7 (x— p), (1.2)

where x is an observation, p is the mean of the observations, and X is the covariance matrix

of the observations. In practice we must replace the unknown true mean and covariance
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with estimates, such as the sample mean and covariance. We can then identify outliers by
looking for observations whose squared distance is larger than a threshold determined by the
distribution of D?.

Chow et al. (1999) is one of the earliest financial studies to advocate the use of MSDs
based on the sample mean and covariance matrix for identifying multivariate outliers. Kritz-
man and Li (2010) used such distances to identify outlying or “turbulent” time periods in
multivariate financial time series.

Since sample means and covariances can be unduly influenced by outliers, MSDs based
on these estimates may be misleading. The resulting distances could incorrectly identify
valid observations as outliers or fail to identify true outliers. Robust mean and covariance
estimates can potentially improve upon the situation: the robust estimates would be less
affected by outliers and hence would better represent the center and dispersion of the non-
outlying bulk of the data. So-called robust squared distances (RSDs) would, in principle,
do a better job of detecting multivariate outliers. For instance, Boudt et al. (2008) used
RSDs based on a robust mean and covariance estimate to detect and shrink outliers in data
prior to estimating value-at-risk and expected shortfall. There have not been many other
applications of such “robust distances” in finance, however. We will present some motivating

examples in Chapter 3.
1.5 Other Potential Applications of Robust Methods in Quantitative Finance

Generally, anywhere mean and covariance estimates are needed, one can consider using ro-
bust mean and robust covariance estimates instead of the usual sample mean and covariance.
Scherer and Martin (2005) devotes an entire chapter to such applications in portfolio opti-
mization. The review of Martin et al. (2010) presents more extensive applications to equity
portfolio management.

We note in passing that our use of the term “robust” is not related to the use of the term
“robust” in so-called “robust portfolio optimization” as developed by Goldfarb and Iyengar

(1993); Erdogan et al. (2004); Ceria and Stubbs (2006); Garlappi et al. (2007) and critiqued
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in Scherer (2007). We use the term “robust” to refer to estimators that are resistant to
outliers and model misspecification, while robust portfolio optimization refers to a method

of constructing an optimal portfolio in the presence of parameter uncertainty.
1.6 Main Contributions of this Dissertation

This dissertation is divided into two parts. The first half (Chapters 2 and 3) focuses on using
robust squared distances (RSDs) to reliably detect multivariate outliers with a specified false
positive rate in the type of asset returns and factor exposure data used to conduct empirical
asset pricing studies and to construct and manage equity portfolios.

Chapter 2 develops a new approach to calibrating RSDs based on the minimum covari-
ance determinant (MCD) that improves upon the prior approach of Hardin and Rocke (2005)
in sample sizes less than 250 and when the MCD uses a fraction of the observations greater
than the one achieving the highest breakdown point of approximately 1/2. This impro-
vement, when combined with the Iterated Reweighted MCD technique developed by Cerioli
(2010), makes MCD-based RSDs more accurate for the data set sizes typically encountered
in portfolio management and asset pricing research applications.

In Chapter 3 we use the improved detection method developed in Chapter 2 to illustrate
how the standard MSDs based on the sample mean and covariance can fail to detect many
multivariate outliers in financial data. We show that our RSD approach identifies many more
multivariate outliers in asset returns and factor exposure data, outliers missed by the stan-
dard approach. We demonstrate our approach on multivariate hedge funds and commodities
portfolios, where outlying times might indicate a breakdown or change point of the usual
relationships between assets; and on factor exposure data, where outlying assets correspond
to firms with unusual market or accounting data. We also show how one-dimensional outlier
approaches like trimming and Winsorization can miss multivariate outliers, and argue that
our multivariate approach is strongly preferable to these one-variable-at-a-time approaches.

In the second part of this dissertation, we show that a theoretically well-justified robust

MDM-regression should be used as a complement to least squares in an empirical asset pricing



16

context. The robust regression will reveal which conclusions about risk premia are driven by
highly influential outliers. Chapter 4 revisits the classic paper of Fama and French (1992)
(FF92) using MM-regression and extends the analysis through the end of 2015. Contrary to
FF92, we show that beta is still a significant predictor of average stock returns. We verify
that, when all stocks are considered, average returns decrease with firm size as documented
by FF92, but show that this result is driven by smaller firms with large isolated returns.
When the influence of such outliers is controlled via cross-sectional MM-regression, average
returns increase with firm size for most stocks. We show that the value effect, that average
returns increase with a firm’s book-to-market ratio, holds even in the robust regression case.
We also demonstrate that this effect is largely confined to small stocks in modern financial
markets: the effect vanished from moderately-sized stocks after 1980, and was never present
in large stocks. Somewhat surprisingly, we show that the relationship between average stock
returns, beta, and firm size is non-linear: there is a non-trivial interaction between beta and
size that must be captured in an asset pricing model to explain the cross-section of average
returns. The results in this chapter are strong evidence of the utility of optimal robust MM-
regression for asset pricing work, and should encourage the use of such robust regression in
other popular asset pricing models.

Chapter 5 summarizes the dissertation and offers suggestions for future research.

Appendix A summarizes a preliminary experiment done prior to Chapters 2 and 3. This
simulation study extends work done by Cerioli et al. (2009) for MCD-based RSDs to distances
based on several other robust dispersion estimates. Cerioli et al. (2009) pointed out how
MCD-based distances could have incorrect false positive rates in small sample sizes and higher
dimensional data, and motivated the calibration method developed in Cerioli (2010). We
show that RSDs based on three other dispersion estimates also suffer from the same problem,
to varying degrees, and are in need of calibration. The results of this study motivated
our decision to use calibrated MCD-based RSDs in Chapter 3 rather than RSDs based on
other dispersion estimates, as well as our work in Chapter 2 to improve the Hardin-Rocke

methodology for our purposes.
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Chapter 2

CALIBRATED MINIMUM COVARIANCE DETERMINANT
ROBUST DISTANCES

Abstract

Hardin and Rocke investigated the distribution of the robust Mahalanobis squared distance
(RSD) computed using the minimum covariance determinant (MCD) estimator. They sho-
wed that the distribution of RSDs for outlying observations not part of the MCD subset
is well-approximated by an F' distribution. They developed a methodology to adjust an
asymptotic formula for the degrees of freedom parameters of this F' distribution to provide
correct parameter values in small-to-moderate samples. This methodology was developed
for the maximum breakdown point version of the MCD, which is based on approximately
half of the observations. Whether the approximation remains accurate for the MCD using
larger subsets of the data is an open question. In this chapter, we show that their approx-
imation works quite well for the more general MCD, but can be noticeably inaccurate for
sample sizes less than 250 and when the MCD estimate uses nearly all of the observations.
Motivated by the desire to apply RSD-based outlier detection tests to financial asset return
and factor exposure data sets whose typical sample sizes are smaller than 250, we develop a
more general correction procedure that is accurate across a wider range of sample sizes and
MCD subset sizes than the Hardin and Rocke approach. We use our approach to extend
Cerioli’s IRMCD procedure for accurate RSD-based outlier tests to arbitrary MCD subset

sizes.
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2.1 Introduction

Detection and mitigation of outliers in multivariate data remains a challenging problem. A
common method of detecting outliers in multivariate data is through the use of Mahalanobis
distances. Mahalanobis distances, introduced in Mahalanobis (1936), measure the distance
of an observation from the mean of a distribution, weighted by the correlation information
contained in the covariance matrix (Seber, 1984). If x is an observation from a multivariate
distribution with mean g and covariance 3, the Mahalanobis squared distance (MSD) of x
from p is defined as

D?=(x—p)'ES (x—p). (2.1)

Compare this definition to the usual Euclidean distance of x from p:

(x — ) (x — o),
The extra X! factor captures the fact that the distribution may not look the same in each
direction. For example, it may be more dispersed in one direction, so an observation that
is far from the mean in a Euclidean sense may not be “unusually” far away once covariance
information is taken into account.

When x is r-dimensional multivariate normal with known mean and covariance, the
population MSD is distributed as a chi-squared x? random variable with v degrees of freedom
(Mardia et al., 1979; Seber, 1984). This suggests a test of deviation from the multivariate
normal assumption: compare an observation’s MSD to an appropriate quantile of the chi-
squared distribution. An observation may be an outlier if its associated value of D? is larger
than some critical threshold derived from the distribution of D2,

In common practice the unknown mean p and covariance X are replaced by their classical

estimates ft = X, the coordinate-wise sample mean, and

1
n—1

n

D (xi—%)(x; —x)7, (2.2)

i=1

S =

the sample covariance matrix. When the x; are multivariate normal, the resulting sample

MSDs are approximately chi-squared for “moderate” values of n, but in higher dimensions
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larger sample sizes are needed for the approximation to be reasonably accurate. Small (1978)
shows that in dimension v = 4, the chi-squared approximation is noticeably inaccurate in
sample sizes as small as n = 100. Gnanadesikan and Kettenring (1972) showed (using an
earlier result of Wilks (1962)) that the exact distribution of the sample MSDs in this situation
is a scaled Beta distribution. In practice, however, the chi-squared approximation is used,
either for simplicity or due to a lack of awareness that the accuracy of the approximation

depends on the dimension of the data.

Since the classical covariance estimator (2.2) is not robust to outliers (see, for instance,
Maronna et al. (2006)), using it in the Mahalanobis distance metric could lead to some good
observations being flagged as outliers (known as “swamping” in the literature) (Rousseeuw
and van Zomeren, 1990, 1991; Becker and Gather, 1999; Pena and Prieto, 2001). Moreover,
when there are multiple outliers, the classical Mahalanobis distance metric may lead to “mas-
king” of moderate outliers by one extreme outlier (Pearson and Chandra Sekar, 1936; Rocke
and Woodruff, 1996). This suggests replacing the sample mean and covariance estimate in
Equation (2.1) with estimates of location and dispersion that are robust to outliers. We will
refer to the resulting distance metric as the robust Mahalanobis squared distance (RSD).
The robust estimates downweight or ignore the outliers, and thus provide a better represen-
tation of the location and dispersion of the majority of the data. Non-outlying points should
hence be closer to the location estimate than outlying points, and outlying points should
have larger distances than expected under the multivariate normal model.

It remains to calculate an approximate sampling distribution for RSDs in order to identify
these outliers. Unfortunately, determining appropriate critical values for the Mahalanobis
distance test is more challenging in the robust case than in the classical case. The exact
finite-sample distribution is not known for any of the common robust dispersion estimates.
The distributional assumption used to test the distances in the classical case, namely that the
distances are independent and identically distributed (IID) chi-squared x? random variables,
only holds asymptotically in the robust case when the dispersion estimate is consistent for

3 (Mardia et al., 1979; Serfling, 1980; Seber, 1984). As we discuss below, the sample sizes
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needed to justify using the asymptotic approximation increase as the dimension of the data

mcreases.

The problem of calculating good approximations to the sampling distribution of RSDs
has been studied most extensively for the minimum covariance determinant (MCD) estimator
introduced by Rousseeuw (1985). Briefly, for 0 < v < 1/2, the MCD() dispersion estimate
is the sample covariance of the subset of h & (1 — «)n observations whose covariance matrix
has the smallest determinant, over all possible h element subsets of the n observations. For
the MCD estimate, it is known that using x? quantiles for critical values can lead to many
more false positives than expected in small to moderate samples, especially when the data
set actually does not contain any outliers (Rousseeuw and van Zomeren, 1991; Becker and
Gather, 2001). In fact, Cerioli et al. (2009) found that the use of the x? approximation
leads to a serious problem for MCD-based distance tests for outlyingness: the realized false
positive rates of the tests can be substantially larger than the nominal false positive rates

even in moderate sample sizes.

Cerioli et al. (2009) looked at how well MCD-based Mahalanobis distances performed
both in an individual testing framework (“is this observation an outlier?”) and under a
simultaneous testing framework (“are there any outliers in the data?”). First they conducted a
simulation experiment in which each observation was tested for outlyingness at some nominal
test size (say, @ = 0.01). We expect to see about |an] incorrectly flagged observations on
average. Their simulations show this is not the case for the MCD with x? critical values.
Testing MCD-based distances against x?2 critical values requires large sample sizes to be
reliably accurate, with the needed sample size increasing with dimension v. For small to
moderate sample sizes the y2 critical values can give significantly more false positives than
expected based on the nominal test size: in dimension v = 10 the average false positive rate
is about 5 times too large for n = 200, and about 13 times too large for n = 100. (Further

details are available in Appendix A.)
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Cerioli et al. (2009) then looked at the accuracy of tests of the intersection null hypothesis
Ho't {1~ N (i E)} 00 {0 ~ N (1, 3)} (2.3)

that examines whether there are any outliers in the data (as opposed to whether a given
observation is outlying). The obvious way to perform this test is via comparison of the largest
RSD in the set of observations to an appropriate quantile at a Bonferroni-corrected size a/n.
The quantile could come from the x? distribution, as done in Becker and Gather (1999, 2001),
or the scaled F' distribution derived by Hardin and Rocke (2005). Again via a simulation
study, Cerioli et al. showed that the y? quantile works poorly for testing the intersection
hypothesis with the maximum breakdown point case of the MCD, with false positive rates
50-100 times too large for small samples in dimension v = 10. Subsequently, Cerioli (2010)
developed a methodology, the Iterated Reweighted MCD (IRMCD), that yields RSD-based
tests for outliers with the correct false positive rates for both the individual and intersection
tests. Cerioli’s approach (described in Section 2.4.3) works for the MCD estimator and relies
upon the distributional approximation developed by Hardin and Rocke (2005).

For financial applications, however, we would not want to use the maximum-breakdown
point case of MCD, as it discards nearly half of the data to compute the estimate. We
would recommend that a practitioner use the MCD with 90% or more (i.e., v < 0.10) of
the observations, depending on the sample size. This choice of trimming would only exclude
extreme outliers from the estimate. Although Cerioli (2010) presents tests of the IRMCD
methodology for MCD(0.25), the methodology depends on the distributional approximation
developed by Hardin and Rocke (2005). That distributional approximation uses a correction
developed only for the maximum-breakdown point case of MCD. We were not aware of any
studies examining how well the Hardin-Rocke correction works for the more general version
of the MCD, so we conducted simulations to test the accuracy of the approximation outside
of its original design parameters. We found that the Hardin-Rocke approximation works
well in moderate-to-large (n > 500) samples for the general version of the MCD, but that it

is unreliable in smaller samples and/or when 90% or more of the data is used to compute
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the estimate. Thus, in order to use IRMCD safely for the MCD in general, we developed
an improved approximation for the distribution of MCD-based RSDs for outlying points.
We show our correction methodology is more accurate than the Hardin-Rocke approach for
MCD(y) for 4 as small as 0.005. We validate our approach using simulated data and via
tests of the IRMCD approach.

The remainder of the paper is organized as follows. Section 2.2 reviews technical details
on the MCD estimate, the Hardin-Rocke distributional approximation, and Cerioli’s IRMCD
procedure. Section 2.3 describes the Hardin-Rocke method for estimating the Wishart de-
grees of freedom parameter needed to use their distribution approximation, and describes
our improved method that is more accurate than the Hardin-Rocke method for a wide range
of sample sizes, dimensions, and trimming fractions. Section 2.4 presents several tests of our

model. Section 2.5 concludes with a discussion of potential future improvements.

2.2 Technical Background

2.2.1 The MCD Estimate

Rousseeuw (1985) introduced the minimum covariance determinant (MCD) robust dispersion
estimate. Given n observations xy, . . ., x, of dimension v and a subset of size h < n, the (non-
reweighted or raw) MCD subset of the observations is defined by a set of indices {j1,...,jn}
such that the determinant of the sample covariance of the observations x;,, ..., x;, is minimal

over all subsets of observations of size h:
det 3 (xj,,...x;,) < det 3 (x4, ... Xz, ) »

for any subset {ki,...,kn} of {1,...,n} with cardinality h and satisfying 1 < k; < --- <
kn < n. The MCD estimate of the dispersion matrix of the data is then the sample covariance
matrix Sy;cp of the MCD subset, and the MCD estimate of the location vector is the sample
mean X yop of the MCD subset.

Croux and Haesbroeck (1999) demonstrate that the efficiency of the raw MCD is rather
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low for the maximum breakdown point case, especially in small dimensions.! Cerioli therefore
uses a reweighted MCD in his IRMCD procedure. Reweighting the observations using the
raw MCD estimate can increase the efficiency of the estimate while preserving its breakdown
point (Lopuhad, 1999; Croux and Haesbroeck, 1999). A “reweighted” MCD is calculated by
computing the “raw” MCD based on the given observations and then excluding observations
based on their RSD (using x? critical values). The reweighted MCD estimate is then the
classical mean and covariance of the remaining observations.

The MCD is computationally difficult because it involves a combinatorial optimization
problem. In practice most MCD implementations actually compute an approximate solution
by optimizing over a random subset of all possible size-h subsets of the n observations.
Rousseeuw and van Driessen (1999) developed the fastMCD algorithm based upon this idea.
The fastMCD algorithm is used in the covMcd function in the R package robustbase and is
used in all calculations below.

Although we have defined the MCD in terms of the number of observations h used to
compute the estimate, it is often convenient to think of the MCD in terms of the asymptotic
fraction v, 0 < v < 1/2, of the data trimmed from the MCD estimate, as this fraction
controls its properties such as its breakdown point and efficiency. In the R function covMcd
implementing the MCD, one specifies 1 — 7, the asymptotic fraction of observations used in

the MCD, as an input parameter. The value h is then computed from 1 — ~ as

h=2ny —n+2(n—ny)(1—~)]

= [(2ns —n)y+n(l—7)], (2.4)
where

n+v+1
N9 = T .

IFor instance, when the observations come from a 5-dimensional multivariate normal N (u, ¥) and contain
no outliers, the maximum breakdown point version of the MCD is only about 13% efficient for estimating
diagonal elements of the true covariance matrix 3 compared to the usual sample covariance estimate, and
11% efficient for the off-diagonal elements.
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If n is even, then

[

Similarly if n is odd we can show that

O R

When n > v, the quantity 1 — h/n will be approximately equal to v, so that h ~ (1 —v)n

and the MCD estimate trims approximately ny observations. This motivates our use of v as
an approximate or asymptotic “trimming fraction” (Maechler, 2016).
The definition (2.4) ensures that in smaller samples the value of h computed using (2.4)

will be strictly smaller than n, even if v is very small. In the n even case, rearranging (2.5)

wone [l ]

The right hand side will not vanish unless v = 0 or n = 2 VTHJ The MCD is not recom-

yields

mended in situations where n < 2v, so the latter situation never occurs provided one follows
this recommendation. Thus we have h < n for any non-degenerate case of MCD(7).

The number of observations n — h not used in the MCD subset can still be quite different
from n~, however, when ~ is small and/or n is small. For example, suppose again that n is
even and that v = 1/N for an integer N. Plugging v = 1/N into (2.6) yields

n_h:{(n—ﬂ%ﬂ)]

N

For 142 [“H| <n < N +2|%], the right-hand side of this equation will be equal to 1,

i.e., MCD(1/N) will exclude exactly 1 point. Again, in practice we would not use the MCD
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with n < 2v, so a more practical range is
1 1
max{l—i—QLV—g J,QV}§n§N+2LV—£ J

This range depends on the dimension v and the value of v = 1/N, and is much larger for

smaller values of v (i.e., larger values of N). For example, for v = 0.25 = 1/4 and v = 2, the
range is 4 < n < 6, while for v = 20 the range will be empty since there are no even n > 40
that satisfy the condition above when N = 4. For v = 0.01 = 1/100 and v = 2, we will have
n—h =1 when 4 <n <102. When v = 20 the corresponding range is 40 < n < 120.

We thus emphasize that v is an asymptotic trimming fraction. In the remainder of this
paper, we will denote the MCD estimate based on the asymptotic fraction 1 — ~ of the
observations by MCD(+), with the above caveats in mind.

In the most commonly used version of the MCD(7) estimate, the subsample size is set to
hypp = [(n4+v+1)/2], so that 1 — hygp/n ~ 1/2 when n > v. With this subsample size
the MCD achieves the maximum possible breakdown point of 1/2 for large samples. We will
use the notation MCD(~*) to refer to the maximum breakdown point case of the MCD.

2.2.2 The Hardin-Rocke Distributional Approzimation

Hardin and Rocke (2005) studied the distribution of (non-reweighted) MCD-based RSDs for
the MCD(~*) estimator. Their work was motivated by previous studies such as Rousseeuw
and van Zomeren (1991) that showed that the x? critical values can be too small in sample
sizes n < 50 in dimensions v < 4, resulting in many observations being incorrectly flagged
as outliers. Hardin and Rocke established that, when the observations x; arise from a v-
dimensional multivariate normal distribution N(u, ¥), the RSDs for observations not in the
MCD subset are approximately independent of the RSDs for the MCD subset, and that the
non-MCD subset distances are approximately F' distributed rather than x? distributed. Their
argument rests upon the assumption that the distribution of the scaled MCD(~*) estimate

dispersion matrix Sy;op is well-approximated by a v-dimensional Wishart distribution:

%SMCD ~ Wishart, (m, 3), (2.7)
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where v is the known dimension of the observations, m is an unknown Wishart degrees
of freedom parameter and ¢ is an unknown consistency constant. Recall that the sample
covariance matrix (2.2) of n observations from a v-dimensional multivariate normal distri-
bution follows a scaled v-dimensional Wishart distribution with n — 1 degrees of freedom.
The MCD(v*) estimate Sy;cp is the sample covariance of the MCD subset of observations,
which is well-modeled by a multivariate normal distribution (assuming the subset does not
possess strong non-linear structure). It is thus reasonable to assume Sy;cp follows a Wishart

distribution, but with an unknown degrees of freedom parameter.

Hardin and Rocke then show that the sample RSDs for outlying points are approximately
F-distributed after suitable scaling:

clm—v+1)

9 _
my DSMCD (le XMCD) ~ Fu,m71/+1- (28)

This F distribution provides more accurate critical values for testing RSDs than the y?2

distribution.

2.3 Estimating the Wishart Degrees of Freedom Parameter in the Hardin-Rocke
F Distribution

In order to use the distribution (2.8) for MCD(y*) or more generally, MCD(y), we must
determine the parameters ¢ and m. Simulation is the most accurate means of estimating the
parameters ¢ and m but obviously not convenient for everyday use of the Hardin-Rocke F'
distribution. In this section we will review the approach developed by Hardin and Rocke to
estimate m for use with the MCD(v*). We will then show that their method is inaccurate
for small samples n < 250 and for the more general MCD(7) with small v (e.g., v = 0.05).
Finally, we will develop a better model that works reliably across a wide range of sample

sizes, dimensions, and trimming fractions.
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2.3.1 The Hardin-Rocke Adjustment to the Asymptotic Degrees of Freedom

Hardin and Rocke note that if Sy,cp has the scaled Wishart distribution (2.7), then its

diagonal elements s;; will be distributed as
me™' 845 ~ TjiXoms

where o0;; are the diagonal elements of 3. The MCD estimate is affine equivariant, so one
can assume p = 0, a vector of zeros, and 3 = I, the identity matrix with o;; = 1. Since a
X2, random variable has mean m and variance 2m, we can use the method of moments to

estimate m.

E[mc sl =m (2.9)

Var (mc’lsjj) =2m

oV = VVar(s;;)  c\/2/m _ \/%

E(sj) c

where C'V is the coeflicient of variation. Therefore

2
el

m (2.10)

Croux and Haesbroeck (1999) derive the influence function for Sy;cp in the general MCD(7y)
case and use it to calculate the asymptotic variance of Sy;cp. This calculation provides
asymptotic formulas for the variance of s;; that can be used to estimate C'V, and hence,
m in large samples. The Appendix to Hardin and Rocke (2005) summarizes the asympto-
tic formulas casy and masy(n, v,) for ¢ and m, respectively. We reproduce their formulas
again here for the reader’s convenience.? Here v =~ 1 — h/n is the approximate fraction of

observations trimmed by the MCD as in Section 2.2.1.

2Qur notation here is slightly different from that of Hardin and Rocke (2005). We use v to represent the
dimension rather than p, and we refer to the fraction of observations trimmed from the MCD as - rather
than a.
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The constant ¢(v, ) is defined as

1 —y
P(x2,,<q(v,1—7))

where ¢(v,1 — ) is the 1 — v quantile of a x2 distribution and satisfies 1 — 7 = P(x? <

c(v,v) =

)

q(v,1—7=)). The asymptotic consistency constant c,s, is defined as the reciprocal of ¢(v,7):*
Casy = 1/c(v,7). (2.11)
The asymptotic coefficient of variation is given by

CV2, = c(v, ) (v, ),

asy

where v(v, ) is the asymptotic variance of the s;;. (The formula for v(v,v) is provided in

Appendix 2.A.) Thus from (2.10) we have

2

o) 212

masy(n7 v, 7) -

Our notation reflects that mas,(n, v, y) is actually function of n, v, and +, even though Hardin
and Rocke only considered the v = v* case.

Croux and Haesbroeck’s formula for ¢,y is reliable for small samples, but this is not the
case for masy(n,v,7y). Thus we need a way to estimate m accurately for small to mode-
rate sample sizes (e.g., 30 < n < 250). Hardin and Rocke estimated the values of m for
the MCD(v*) estimator via simulation for sample sizes n = 50, 100, 250, 500, 750, 1000 and

dimensions v = 3,5,7,10,15,20. Their procedure is as follows.

1. Simulate N = 1000 random samples of size n from a v-dimensional multivariate normal

N(0,1).

2. For each random sample, calculate the MCD(v*) estimate Sy;cp. Retain the v diagonal
elements s;; from each Sycp. There will be a total of Nv such values from all the

simulations.

3Different authors define the consistency constant differently, hence the need for an extra constant here.
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3. Calculate the estimate Cgm(n, v,7") of ¢ as the sample mean of the Nv s;; values.

4. Calculate the sample variance Ugm(n, v, 7*) of the Nv s;; and use it to calculate an

estimate Eﬁlim(n, v,7*)? of the coefficient of variation.

5. Calculate an estimate Mg, (n, v, 7*) of m using (2.10) as
2 _ 2Csm(n, v, 7*)?

ﬁ/sim(n, v, ’}/*) ﬁsim(na v, ’Y*) '

msim(na v, ’Y*) =

Obviously mgm(n,v,v*) is a function of n and v, but it is also a function of 7 in general
since the MCD(7y) estimator in Step 2 could be used with with any value of ~.

Hardin and Rocke then fit the following model to the simulated g (n, v, 7*) using biva-
riate least squares regression to estimate the true m from the Croux-Haesbroeck asymptotic

Masy (N, v, 7*) for the v = 7* case:

log (M> = Bo + fiv + Balogn + €, €n u N(0,1)
Measy (10, V, 7*)
where € is an error term. They used the 36 values of Mg (n,v,7*) to compute values of
log (Msim (1, v, 7*) /Masy (1, v,7*)), which were then regressed on the corresponding 36 pairs
of predictors (v, log(n)) for the 6 values of v and 6 values of n stated above. The final fitted

model is

log (L) — 0.725 — 0.00663 — 0.0780 log(n). (2.13)
masy(”a v, ’Y*)

We will refer to the above formula to estimate m from ma,s,(n, v, ) as the “Hardin-Rocke
adjustment”.

Hardin-Rocke established via simulation that their method gives more accurate results,
in terms of detecting an appropriate number of outliers, for the MCD-based RSD tests than
the standard x2-based tests. The simulation study of Cerioli et al. (2009) further affirmed
that, for sample sizes n > 100 and even dimensions up to v = 12, the Hardin-Rocke quantiles
were more accurate for testing individual observations for outlyingness than the x? quantiles

for the MCD(7*) case. Unfortunately, their study also showed that Hardin-Rocke approach



30

can still result in too many false positives for sample sizes n < 100. There is also the question
of how well the Hardin-Rocke adjustment works for small values of values of v other than
v*. While the formulas for c,s, and masy(n,v,7) are valid for arbitrary values of v, Hardin
and Rocke’s simulated values mgm(n,v,7y) were estimated using the MCD(~*). It is not
clear from the Hardin and Rocke paper how well their approximation (2.13) works for other
fractions v, nor have we seen any research into this matter.

In the next section we show that the Hardin-Rocke adjustment (2.13) does not work well
for sample sizes less than 250 when v € {0.25,0.05,0.01}. The ensuing sections will then
detail our development of a new model that works more reliably across a larger range of

sample sizes, dimensions, and trimming fractions.

2.3.2  Testing the Hardin-Rocke Adjustment for Other Values of

First, we consider how the 0.01 critical value, i.e., the 0.99 quantile, from the Hardin-Rocke
scaled F' distribution varies with the input parameters m and v. For dimensions v = 5, 10, 20
and integer values of m satisifying v < m < 20v, we calculated the logarithm of the 0.99
quantile of the Hardin-Rocke F' distribution given in (2.8). Figure 2.1 shows how the lo-
garithm of the 0.99 quantile depends on the Wishart degrees of freedom parameter m for
v = 5,10,20. For fixed values of dimension v, larger values of m lead to smaller quantiles.
Thus if we overpredict m, the quantiles of the F' distribution will be too small, and we will
reject more observations than we should.

Next we examine how well the Hardin-Rocke adjustment (2.13) estimates the true value
of m for v other than v*. We estimated Mg, (7, v,y) using a simulation similar to that per-
formed by Hardin and Rocke (described in the previous subsection) but extended to include
the MCD(v) for several values of v other than * and more coverage of small sample sizes.*

We simulated N = 5000 draws of size n from a multivariate normal distribution N(0,1,)

with dimensions v = 3,5,7,10, 15,20 and sample sizes n = 50, 100, 250, 500, 750, 1000. We

4Additional details on the simulation computations are available in Appendix 2.B.
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Figure 2.1: Logarithms of 0.99 quantiles produced from Hardin-Rocke scaled F' distribution
(vertical axis) as a function of the Wishart degrees of freedom parameter m (horizontal axis).
The quantiles are shown for several values of dimension v (plot symbols and colors).

calculated the MCD(y) subset of each simulated data set for 0.05 < v < 0.45 in increments
of 0.05, as well as maximum breakdown point case v* and the extreme cases of v = 0.01 and
v = 0.005. In order to understand well how the Hardin-Rocke adjustment worked in small
samples, we also included sample sizes n = 3v, 5v, 7Tv, 9v, 11v for the above dimensions and
values of 7. We remind the reader that, as discussed in Section 2.2.1, v is an asymptotic
trimming fraction. When n is small or v is small, the number of observations excluded from
the MCD() subset can be different from the asymptotic value of ny. For example, when
v =3 and n = 3v = 9, one observation is excluded from the MCD(0.01) subset, even though
the value [0.01 x 9] = 0 might suggest that no observations will be excluded.

For each simulated data set and each value of v we calculate the estimate Mgy, (1, v,y) of
the Wishart degrees of freedom m using Hardin and Rocke’s simulation procedure (described

in the previous section). The consistency constant ¢ is estimated by the asymptotic version

5We use dimension-dependent sample sizes for small-sample coverage to avoid a subtle problem with fixed
sample sizes like n = 25: the MCD may be infeasible when n < 2v. The R function covMcd will helpfully
warn the user about such small sample sizes.



32

Casy (Equation (2.11)).

We first considered how well the Hardin-Rocke adjustment estimated m for v < ~*.
Figures 2.2-2.4 show, for MCD(y) with v = 0.25, v = 0.05, and v = 0.01, respectively,
the ratio of the Wishart degrees of freedom m estimates obtained from simulation to those
obtained from the Hardin-Rocke adjustment to the asymptotic degrees of freedom. The
range of sample sizes in each figure is constrained to n < 250 to highlight the behavior of
the Hardin-Rocke adjustment in the smaller sample sizes typically encountered in financial
applications, e.g., n = 60 (five years of monthly returns) or n = 252 (one year of daily
returns). We will briefly describe the behavior for n > 250 as well, even though this range
is not reflected in the figures.

In the v = 0.25 case, the Hardin-Rocke adjustment leads to values of m that can be
as much as 1.3 times too large for sample sizes smaller than n = 250. As the sample
size increases beyond n = 250, the Hardin-Rocke estimated values of m are closer to the
simulation values, with the convergence to equality requiring larger sample sizes in lower
dimensions. For the smaller trimming fractions v = 0.05 and v = 0.01, on the other hand,
the Hardin-Rocke adjustment over-estimates m by a factor as large as 2.5. The performance
of the adjustment steadily improves with sample size, however. Convergence to equality
between the two methods also takes a bit longer with the smaller trimming fractions.

Next we looked at whether the above inaccuracy in estimating m translated into me-
aningful differences in the critical values for testing RSDs. Figures 2.5-2.7 show how the
resulting 0.01 critical values computed using Hardin and Rocke’s F' distribution using the
simulated and Hardin-Rocke estimated values of m compare for v = 0.25, v = 0.05, and
v = 0.01 respectively. The overprediction of m seen in Figures 2.2-2.4 translates into critical
values that are smaller than they should be, as we would expect from Figure 2.1. In small
samples n < 250 and small dimensions v < 5 the critical values are typically about 80%
as large as they should be based on the value of m estimated from the simulation. For
the smaller values of ~ it takes slightly larger sample sizes for the two methods to produce

approximately equal critical values.
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Figure 2.2: Comparison of Wishart degrees of freedom parameter m estimated via simulation
and Hardin-Rocke approach with v = 0.25. The ratio of the degrees of freedom parameters
coming from the Hardin-Rocke approach to those resulting from the simulation is shown
(stratified by dimension v). Sample size is plotted on the horizontal axis. Sample sizes
shown in the plot are the dimension-dependent values n = 3v,5v, 7v,9v, and 11v (which
hence vary between panels), as well as the fixed values n = 50,100,250. Not shown are
ratios for the sample sizes n = 500, 750, 1000. The dimension v for each subgroup is shown
in the yellow bars at the top of each subplot.
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Figure 2.3: Comparison of Wishart degrees of freedom parameter m estimated via simulation
and Hardin-Rocke approach with v = 0.05. The plot setup is identical to that of Figure 2.2.
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Figure 2.4: Comparison of Wishart degrees of freedom parameter m estimated via simulation
and Hardin-Rocke approach with v = 0.01. The plot setup is identical to that of Figure 2.2.
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Figure 2.5: Comparison of 0.01 critical values produced using Wishart degrees of freedom
parameter m estimated via simulation and Hardin-Rocke approach with v = 0.25. Critical
values are calculated using the scaled F' distributional approximation of Hardin and Rocke
with each degrees of freedom parameter estimate. The ratio of the Hardin-Rocke critical

values to those resulting from the simulation is shown (stratified by dimension v). The

dotted line at a ratio of 1 indicates when the two critical values are approximately equal.
The pattern of sample sizes used here is
identical to that used in Figure 2.2. The dimension v is shown in the yellow bars at the top

Sample size is plotted on the horizontal axis.

of each subplot.



36

UNDER-ESTIMATION of 0.01 CRITICAL VALUE
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Figure 2.6: Comparison of 0.01 critical values produced from Wishart degrees of freedom
parameter estimated via simulation and Hardin-Rocke approach with v = 0.05. The plot
setup is identical to that of Figure 2.5.

Overall we observe that the Hardin-Rocke adjustment (2.13) is quite accurate for pro-
ducing 0.01 critical values for sample sizes of at least 250 and v € {0.25,0.05,0.01}, but
can result in critical values that are much too small for sample sizes less than 100 and a bit
too small for 100 < n < 250. The inaccuracy is worse for the smaller trimming fractions

v = 0.05 and v = 0.01 compared to the v = 0.25 case.

Thus using the Hardin-Rocke adjustment for small values of 7, e.g., v = 0.05 or v = 0.01,
and/or with n < 250 will result in flagging too many observations as outliers. This is
concerning for our intended use of RSD-based outlier tests in financial applications: it is
quite common in financial applications to encounter sample sizes n < 100 (e.g., 2 years of
weekly data or 5 years of monthly data), and financial practitioners are often keen to use

small values of 7. For financial applications of RSDs it is crucial to have an accurate reference

5We observed similar results for the 0.025 and 0.05 critical values.
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Figure 2.7: Comparison of 0.01 critical values produced from Wishart degrees of freedom
parameter estimated via simulation and Hardin-Rocke approach with v = 0.01. The plot
setup is identical to that of Figure 2.5.

distribution for detecting potential outliers via RSDs in small samples and with small values
of 7. Therefore in the next section we develop a more general formula to estimate the
true degrees of freedom parameter m from the asymptotic value masy(n,v,v) that remains

accurate across a wider range of sample sizes n, dimensions v, and trimming fractions ~.

2.3.83  An Improved Adjustment to the Asymptotic Degrees of Freedom

We start our search for a better adjustment formula with some exploratory data analysis.
Figure 2.8 shows how the estimated values of Mg (n,v,7y) from our simulation compare
to the asymptotic values masy(n, v, ) for varying levels of v and dimension v. The plots
suggests the log ratio of the true m to masy(n, v,7y) decays inversely with a power of sample
size n that depends on 1 — ~. This is in sharp contrast to the model used in the Hardin-

Rocke adjustment, which posited that the log ratio varied with log(n) and did not allow
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for any dependence of m on . Furthermore, with respect to the correct dependence of m
on n, we know that since the asymptotic formula should approach the true value of m as
n — 0o, the quantity log(m/masy(n, v,y)) should go to zero as n — co. In the Hardin-Rocke
adjustment, however, log(m/masy(n,v,7)) goes to £00 as n — oo, depending on the sign of
Ba, the coefficient of log(n) in (2.13).

In their analysis, Hardin and Rocke found that the dependence of log(m/masy(n, v,y)) on
the dimension v was weak. We see that in our data as well, as is evidenced by the stacking
of the points in each plot of Figure 2.8. Finally the sign of the dependence relation changes
for n < 100 when v < 0.1. Here the MCD(~) estimator discards very few observations and
becomes more like the sample covariance estimator.”

Based on the above observations, we propose the following power model for estimating

m from Mgy (n, v,7) in the general v case:

T sim y Yy 1 - u
(m5 (n,v 7)) _ Bo + (1 =) + fav F ennn, €nn id N(0,1). (2.14)

Measy (n7 v, ’y) n/33+54(1_'7)
We fit this model in R using nonlinear least squares (available via the nls function) using
the mgm(n, v,y) values from our expanded simulation as well as the corresponding values of

n, v, and . The final model fit is

m 12.746 — 14.546(1 — ) + 0.127v
log <m (n,v 7)) - 1,0-559+0.149(1—) g (2.15)
asy\/ty
and hence our improved adjustment model for estimating m from m,gs,(n, v, v) is
i 12.746 — 14.546(1 — ~) + 0.127v
M = Masy (N, V,7) €xp < 0E50+0.19(1) . (2.16)

Table 2.1 provides the regression coefficients along with their standard errors. All the re-

gression coefficients are highly significant.

"The change in the shape of the log ratio curves for v < 0.05 does not appear to be an artifact of the
simulation: we ran the experiment for small samples and v < 0.05 multiple times, and observed very
consistent behavior across the experimental runs.
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Figure 2.8: Logarithm of the ratio of the Wishart degrees of freedom estimated via simulation
to the degrees of freedom calculated from the asymptotic formula, plotted against sample
size and stratified by « (printed in the yellow headers) and dimension (given by the plot
symbols in each plot).
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Table 2.1: Estimated coefficients, and their standard errors, for the model described by
Equation (2.14).

Coefficient Estimate Std. Error ¢-Statistic

Bo 12.746 0.305 41.8
51 -14.546 0.368 -39.5
B2 0.127 0.007 17.5
Bs 0.559 0.011 49.2
Ba 0.149 0.018 8.2

2.4 Validation of the Improved Adjustment Model

2.4.1 Out-of-Sample Validation of the Hardin-Rocke Extension

To validate the fitted model (2.15), we used the same simulation procedure used in Section
2.3.3 with a different parameter set: we simulated 5000 draws of size n from a multiva-
riate normal distribution N(0,1,) with dimensions v = 2,3,5,8,11,16,22 and sample si-
zes n = 50,150, 300, 500, 750, 1000, as well as the dimension-dependent sample sizes n =
4v, 6v,8v, 10v, 12v. For each sample we computed the MCD(~y) subset for 0.05 <~ < 0.45 in
increments of 0.05, as well as the extreme cases of v € {0.01,0.005}. We estimate mgim (1, v, )
as before for each combination of parameters. We then use our new model to estimate m
from mysy (n, v, y) for the corresponding values of n, v, v. With the output of this experiment
we can examine how well the new model predicts the Wishart degrees of freedom parameter
m for general v and compare the new model’s performance to that of the Hardin-Rocke

model for v = ~*.

Figures 2.9, 2.10, and 2.11 show how well our proposed method estimates the Wishart
degrees of freedom parameter m relative to the Hardin-Rocke method on the out-of-sample
data set for v = 0.25,0.05, and 0.01 respectively. Each plot shows the ratios of the value of
m estimated using each method to the simulated value g, (n, v,y) for a given combination

of the n and v values used in our out-of-sample testing. Our proposed method is generally
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more accurate for estimating m than the Hardin-Rocke method, as evidenced by the red

triangles plotting near a ratio of 1.

Figures 2.12, 2.13, and 2.14 show how the better estimates of m from our proposed method
translate into 0.01 critical values from the Hardin-Rocke F' distribution for v = 0.25,0.05, and
0.01 respectively. Using our out-of-sample data set, we calculated 0.01 critical values using
the simulated m, the value of m estimated from the Hardin-Rocke method, and the value
of m estimated using our proposed method. The plot shows the ratios of the critical value
computed from the estimated m to that computed using the simulated m for the Hardin-
Rocke method (blue dots) and our proposed method (red triangles) using each combination
of n and v in the out-of-sample data set. Our proposed method generally results in much
more accurate critical values, particularly for v = 0.05 and v = 0.01. Our results for 0.001

critical values were very similar and are not shown to conserve space.

Figure 2.15 shows how the proposed methodology performs relative to the Hardin-Rocke
methodology for the maximum breakdown point case v = ~*. As it turns out, the perfor-
mance of our method depends strongly on the ratio n/v of the sample size to dimension,
so our figure is structured accordingly. The proposed correction is much more accurate (as
evidenced by medians closer to 0) and much less variable (as evidenced by smaller boxplot
heights).® A Mann-Whitney test of the hypothesis that the median difference in the log-ratio
of the predicted m to the simulated m between the Hardin-Rocke method and the proposed
method is 0 has a p-value of 0.028. If we conduct the same test within each n/v group, the p-
values are as follows: (0, 5] : 0.002; (5,10] : 1.2x 1077; (10, 20] : 0.021; and (20, 00) : 5x 1075.
Thus the new method is generally a modest improvement over Hardin and Rocke (2005) in
the maximum breakdown point case v = v*, and a strong improvement for moderate values

of n/v and very large values of n/v.

Finally, Figure 2.16 shows the out-of-sample performance, as measured by the logarithm

8The large outlier for our new method in the 0 < n/v < 5 group corresponds to the case n = 8 and v = 2.
The large outliers for our new method in the 5 < n/r < 10 group correspond to dimension v = 2 with
sample sizes n = 12,16, 20.
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Figure 2.9: Out of sample comparison of estimated Wishart degrees of freedom parameter m
to simulated value Mgy (1, v,7y) using the Hardin-Rocke method and the proposed method
with v = 0.25. The plot shows the ratio of the degrees of freedom parameter m estimated
using a given method to the simulated value Mg, (n, v, ), stratified by dimension v. Blue
dots represent the estimate with the Hardin-Rocke method, while red triangles represent the
estimate with our proposed method. Sample size is plotted on the horizontal axis. Sample
sizes shown in the plot are the dimension-dependent values n = 2v, 4v, 6v, 8v, 10v, 12 (which
hence vary between panels), as well as the fixed values n = 50,150,300. The dimension v
for each subgroup is shown in the yellow bars at the top of each subplot. The dashed line
indicates the ideal ratio of 1.
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Figure 2.10: Out of sample comparison of estimated Wishart degrees of freedom parameter
m to simulated value g, (n, v, v) using the Hardin-Rocke method and the proposed method
with v = 0.05. The plot setup is identical to Figure 2.9.
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dots represent the estimate with the Hardin-Rocke method, while red triangles represent
the estimate with our proposed method. Sample size is plotted on the horizontal axis. The
pattern of sample sizes used here is identical to that used in Figure 2.9. The dimension v
for each subgroup is shown in the yellow bars at the top of each subplot. The dashed line
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Figure 2.13: Out of sample comparison of 0.01 critical values from the Hardin-Rocke F
distribution computed using the estimated Wishart degrees of freedom parameter m from
the Hardin-Rocke method and the proposed method with v = 0.05. The plot setup is

identical to that of Figure 2.12.
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Figure 2.14: Out of sample comparison of 0.01 critical values from the Hardin-Rocke F
distribution computed using the estimated Wishart degrees of freedom parameter m from
the Hardin-Rocke method and the proposed method with v = 0.01. The plot setup is
identical to that of Figure 2.12.
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Figure 2.15: Boxplot showing performance of the proposed correction methodology (NEW)
against that of the Hardin-Rocke methodology (HR05) for the maximum breakdown point
case v = 7*, stratified by the ratio n/v of observations to variables. Performance is measured
by the ratio of the predicted Wishart degrees of freedom value to the value computed via
the simulation methodology used in Hardin and Rocke (2005). For the reader’s convenience,
the pairs (v,n) of dimensions and sample sizes that fall into each n/v bin are listed in the
table below the plot.
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of the ratio of the predicted m to the simulated m, of our proposed improvement to the
Hardin-Rocke methodology for the values of v tested.? Again, the performance of our method
depends on the ratio n/v, so our figure reflects this grouping. Generally the proposed method
is very good when the sample size is between 5 and 20 times the dimension: there is not
much bias (the median ratios are close to 0) and not much dispersion in the correction factors
(as evidenced by the tight boxplot widths). For small samples (n < 5v) the new method
is generally good for 0.05 < v < 0.35, but shows some slight bias downward (meaning the
corrected m is smaller than the simulation suggests it should be) for v > 0.35 and bias upward
for v < 0.05. In very large samples n > 20v and for 0.3 < v < v* our method overestimates
m slightly. The median ratio over all cases is approximately 1.01, so our model tends to
overpredict m by 1% in general.

Overall, when the number of observations n is small compared to the dimension v, the new
method still underpredicts the degrees of freedom parameter m slightly. For large samples
the new method still overpredicts m, but is more accurate on average than the Hardin-Rocke

approach.

2.4.2  Testing that Our Model Gives the Correct False Positive Rates

As further validation of the fitted model, we ran a simulation experiment similar to that used
by Hardin and Rocke (2005) to create Tables 1 and 2 in their paper. We generated 5000 draws
of size n from an uncontaminated multivariate normal distribution N (0,1, ) with dimension
v for sample sizes n = 50, 100, 250, 500, 1000 and v = 5,10,20. For each observation in a
sample, we computed the MCD(v)-based RSDs for v = ~*,0.35,0.25,0.10,0.05,0.01. We
tested observations for outlyingness at the « level by comparing these RSDs to the 1 — «
quantile of the Hardin-Rocke F' distribution with degrees of freedom m calculated using the
Hardin-Rocke adjustment (2.13) and using the new method (2.15) developed in this paper.

Since the data contains no outliers by construction, any outliers detected are false positives.

9Full results are available in Table 2.5 in Appendix 2.D.
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Figure 2.16: Boxplots showing the range of out of sample performance of the proposed
correction methodology, stratified by v (yellow box) and the ratio n/v of observations to
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between prediction and simulation. Outliers are omitted from the plot to highlight the overall
performance of the method. The pairs (v,n) of dimensions and sample sizes that fall into
each bin are identical to those used in Figure 2.15.
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We thus evaluate the performance of the two methods for estimating m by comparing the
empirically observed false positive rate from the simulated data to the true value a. While
we know the limitations of this exercise from the work of Cerioli et al. (2009), this test does
provide another comparison of our method to that of Hardin and Rocke.

Tables 2.2 and 2.3 show the results of testing how well each method of predicting m
translates to outlier detection using the above test. (The results for n = 1000 are similar to
those for n = 500 and are omitted to save space.) For n = 250 or n = 500, the Hardin-Rocke
method leads to false positive rates that are smaller than expected as v gets closer to 0 or
as dimension v increases. For those sample sizes our proposed method gives false positive
rates that are closer to the ideal values of a for most v values. Only in the v = 0.01 case
does our method become noticeably inaccurate, and even then it is still more accurate than
the original Hardin-Rocke approach.

For small samples (n = 100), our method gives false positive rates that are close to ideal
for v = 0.05,0.10,0.25, while the Hardin-Rocke method yields false positive rates that are
too small. For v = 0.35 our method has a higher false positive rate than expected, while the
Hardin-Rocke method has a lower-than-expected rate. At the maximum breakdown point
case v = v* both methods exhibit higher false positive rates than expected, and there is no
clear winner between the two. Neither method is accurate for v = 0.01, but our method is

far closer to the true a.
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In very small samples (n = 50) neither method is particularly accurate: the Hardin-Rocke
method tends to yield false positive rates that are too low, while our method yields rates
that are too high for v > 0.25. For v = 0.10 or v = 0.05 the false positve rate from our
method is a bit smaller than the nominal size «, but it is much closer to the truth than the
rate resulting from the Hardin-Rocke method. The extreme case of n = 50 and v = 0.01 is
particularly challenging for both methods.

One takeaway from the tables for finance practitioners is that for samples of size n = 50,
one should not use MCD(v) with 7 < 0.01, especially if the dimension v is larger than 10.
Likewise, for n = 100, v = 0.05 is about as small as one can go and maintain fairly accurate

false positive rates.

2.4.8 FEztension of FSRMCD and IRMCD to Arbitrary
Cerioli’s FSRMCD and IRMCD Methodologies

Cerioli (2010) developed two methods for conducting accurate outlier tests using MCD-
based RSDs, namely, the Finite Sample Reweighted MCD and Iterated Reweighted MCD
procedures. The Finite Sample Reweighted MCD (FSRMCD) methodology is designed to

control the family-wise error rate (FWER) for the set of individual outlier tests
HOlXZNN<[J,,E), Zzl,,n (217)

The FWER is the probability that at least one of these hypotheses is rejected incorrectly.
A well-known approach to controlling the FWER of a set of tests is Bonferroni correction.
Suppose we wish to achieve a FWER of «4. If we test each individual hypothesis Hy; at the
a = aq/n level rather than the oy level, the FWER is guaranteed to be no more than oy (by
Bonferroni’s inequality). The Bonferroni correction is conservative and does not require us
to assume the tests are independent. It is hence widely applicable. When the tests of the
Hy; are independent, the Sidék (1967) correction gives an exact FWER of o by testing each
individual hypothesis Hy; at the o = 1 — (1 — a)"/" level. The FSRMCD uses the Sidak

correction and the Hardin-Rocke distributional approximation to provide good control over
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the FWER of the individual RSD tests and the correct size for the intersection hypothesis
(Equation (2.3)).

As above, let a be the nominal size at which each individual hypothesis Hy; is tested,
and let o be the nominal size for testing the intersection hypothesis. The FSRMCD method

proceeds as follows.

1. For a given h or 7, compute the raw MCD() on the data.

2. Compute RSDs based on the raw MCD. Test each observation at the 0.025 level for
outlyingness using the Hardin-Rocke distribution.!’ Rejected observations are assigned

weight 0, while all other observations receive weight 1.
3. Compute the reweighted MCD estimate using the weights from Step 2.

4. Test RSDs based on the reweighted MCD using a distribution conditional on the weight
of the corresponding observation from Step 2: for observations receiving weight 1, we
test RSDs against a scaled Beta distribution. For observations with weight 0, we test
RSDs against a scaled F' distribution. These tests are performed using a nominal size

of a, e.g., « = 0.01.

As Cerioli (2010) points out, the FSRMCD procedure unfortunately has low power. The
[terated Reweighted MCD (IRMCD) test improves the power of FSRMCD by adding an
additional step to the process. Let «y be the desired nominal size of the intersection test.

Then o = 1 — (1 — ay)Y/" is the Sidak-corrected size for the individual hypothesis tests.

4. In Step 4 of FSRMCD, test all RSDs using the conditional distribution at the « level.

5. If no observations are rejected by this test, we conclude that there is no evidence of

outliers in the data. If at least one observation is rejected, we then test each observation

10The value of 0.025 is based on a recommendation in Rousseeuw and van Driessen (1999) for the reweighted
MCD.



56

at the ay level using the distribution from Step 4. Any observation that fails its test

is flagged as an outlier.

The first test ensures IRMCD will have the same false positive rate as FSRMCD for the
intersection test, while the second test improves our ability to correctly identify outliers

when they are present in the data set.

Modifying FSRMCD and IRMCD for Arbitrary ~

The FSRMCD and IRMCD procedures depend on the Hardin-Rocke methodology, which was
only defined for the maximum breakdown point case v = 7*. As we showed in Tables 2.2 and
2.3, the Hardin-Rocke estimator for m can lead to false-positive rates that are much too small
for v € {0.01,0.05,0.25} and sample sizes less than 250. Our improved adjustment method
performs much better than the Hardin-Rocke adjustment across a wide range of sample sizes,
dimensions, and trimming fractions. We thus implemented and tested modified versions of
FSRMCD and IRMCD using our improved adjustment. We will then be able to use the
modified versions in financial studies such as the one to be presented in Chapter 3.

Simulations similar to those in Cerioli (2010) were run to verify the accuracy of mo-
dified implmentation. We drew N = 5000 independent samples from an N(0,1I,) distri-
bution, and estimated the size of the intersection test (2.3) as the fraction of samples for
which the null hypothesis is incorrectly rejected at the 0.01 level. We focused on the ca-
ses v € {7%,0.25,0.05,0.01}: the former two for comparison with Cerioli’s results, and
v € {0.05,0.01} for use in later chapters.'!

Table 2.4 shows the results of testing our implementation of the finite-sample and itera-
tively reweighted MCD estimators (FSRMCD and IRMCD, respectively) defined in Cerioli
(2010). Overall our implementation gives the right sizes empirically, and it produces results
consistent with those presented in Table 1 and 2 of that paper. (Table 2.6 in Appendix 2.E

provides standard deviations for the entries in the table.)

' The simulations and the analysis were performed on a laptop running Windows 7 Ultimate SP 1 with
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Table 2.4: Results of simulation tests of FSRMCD and IRMCD implementations. The table
shows the estimated size for testing the hypothesis of no outliers in the data at the nominal
size of 0.01. Ideally each entry should be close to 0.01. The size is estimated using 5000
simulations for each combination of sample size n and dimension v. Compare to Table 1 of
Cerioli (2010). (Table 2.6 in Appendix 2.E provides standard deviations for the entries in
the table.)

Dimension Method n=40 n=60 n=90 n=125 n =200 n =400

7=
FSRMCD  0.013  0.013 0014 0012 0013  0.010
V=35 IRMCD 0015 0011 0013 0011 0011  0.009
FSRMCD  0.023  0.012  0.009 0010  0.008  0.008
v=10 IRMCD 0.020 0.014 0010 0010  0.008  0.008
FSRMCD  0.020  0.012  0.009 0011  0.009  0.009
v=15 IRMCD 0023 0011 0009 0012 0009  0.009
v =0.25
FSRMCD  0.013  0.012 0011 0010 0012  0.009
v=>5 IRMCD 0013 0.014 0012 0012 0010  0.011
FSRMCD  0.013  0.013 0.012 0014 0010  0.010
v=10 IRMCD 0015 0011 0007 0010 0012  0.008

FSRMCD  0.012  0.012  0.011  0.007  0.009  0.008
v=15 IRMCD 0.012 0012 0012  0.009 0010  0.010

FSRMCD  0.010  0.011  0.012 0.011 0.011 0.012
v=>5 IRMCD 0.011  0.012  0.010 0.011 0.011 0.010

FSRMCD  0.011  0.011  0.013 0.009 0.012 0.010
v=10 IRMCD 0.013  0.013  0.011 0.014 0.013 0.010

FSRMCD  0.019 0.013 0015 0012 0011  0.013
v=15 IRMCD 0.017 0011 0015 0009 0012  0.009

FSRMCD  0.006  0.008  0.012 0.010 0.006 0.011
v=>5 IRMCD 0.006  0.009  0.008 0.008 0.010 0.011

FSRMCD  0.007  0.009 0.005 0010  0.009  0.010
v=10 IRMCD 0.007  0.007 0.009 0006 0007  0.009

FSRMCD  0.009  0.008  0.005 0.007 0.008 0.010
v=15 IRMCD 0.008  0.007  0.009 0.011 0.009 0.010




58

Power calculations for our modified implementation of IRMCD are discussed in Appendix

2.F.

2.5 Discussion

Our modified version of the Hardin-Rocke adjustment to the asymptotic degrees of freedom
parameter estimate performs very well in general: in the out-of-sample tests portrayed in
Figure 2.16 our predicted m was larger than the simulated m by only 1%, on average, across
all combinations of sample size, dimension, and 7 tested. The new method is more accurate,
on average, than the Hardin and Rocke (2005) method, and performs more consistently
across a variety of sample sizes and dimensions.

For small samples n < 5v there is still some bias, i.e., the predicted m tends to be too
small for v near v*, and too large for v near 0. Likewise for large samples n > 20v the
predicted m tends to be too large for v near v* and a little too small for v near 0. The
deviations are not terribly large, though. For instance, for small samples and v = 0.005 the
predicted value is 1.06 times the simulated value on average, which means a true m of 50 is
predicted to be 53; this translates into critical values that are 1-2% too small in dimensions
less than 10. In higher dimensions, e.g., larger than 20, the difference in the critical values
will be larger and might have a more noticable impact on outlier detection.

Due to the computational requirements of the simulations done here, we were only able
to run the full experiment once. Thus, we do not know how variable the simulated m can

1.12 However, in the process of investigating the behavior of the simulated m for

be in genera
~v near 0, we did run the v < 0.1 cases several times. As the sample size n gets larger, we
observed more variation in the simulated value of m; however this does not seem to translate
into much variation in the resulting 0.01 critical values. For small sample sizes (n < 100)

or when n is a small multiple of v, there can be a wider range of critical values resulting

an Intel®) Core™ i7-3740QM processor running at 2.7GHz and 32GB of RAM.

12Recall that the commonly used fastMCD procedure of Rousseeuw and van Driessen (1999) involves
random sampling as well, which is an additional source of variability in the m estimates.
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from the simulated m values. The MCD estimate with v < 0.1 is discarding relatively few
observations, so a potential improvement to our methodology might consider an alternative

approach to calculating the distribution of the MCD estimate in such cases.

2.6 Conclusions and Further Research

We have extended the Hardin and Rocke (2005) methodology for estimating parameters of
their F' distribution to the general MCD(7) estimator, thereby ensuring that the FSRMCD
and IRMCD outlier detection methodologies introduced by Cerioli (2010) give the right test
sizes for arbitrary v (as long as the sample size is not very small compared to the dimension).

For some applications the MCD may not be the best robust dispersion estimate to use.
Maronna et al. (2006) recommend the use of so-called S-estimators over the MCD based on
a simulation study detailed in their Chapter 6.8. They demonstrate that certain types of S-
estimators offer a better balance of bias and variability than the MCD. Briefly, an S-estimate
<[L, f]) of multivariate location and dispersion tries to minimize a univariate robust scale
estimate ¢ of the RSDs (based on f1 and 53) subject to constraints on the determinant of the
dispersion estimate . The Maronna et al. (2006) study considered S-estimators based on
two different robust scale estimates ¢: one defined using the Tukey bisquare p function and
another based on the Rocke (1996) biflat p function. The bisquare-based S-estimator can be
configured to have the maximum asymptotic breakdown point of 1/2, but as the dimension
v increases it becomes more efficient, and hence, more biased and less robust to outliers. The
Rocke-type S-estimator was designed to approximately maintain a desired level of efficiency
and robustness as the dimension of the data increases. (These estimators are discussed in
greater detail in Appendix A.) Not surprisingly, the simulations of Maronna et al. show that
the bisquare S-estimator is preferred to the MCD for dimension v < 10, while the Rocke-type
S-estimator is preferred for dimension v > 10.

Furthermore, Alqallaf et al. (2009) points out that the MCD is based on the so-called

Tukey-Huber Contamination Model.'® The Tukey-Huber Contamination Model assumes that

13 Agostinelli and Yohai (2017) provide a review of the the Tukey-Huber and Independent Contamination
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whether a given observation x; is contaminated (i.e., comes from a distribution different from
the other observations) is independent of whether any other observation x; is contaminated,
but if an observation x; = (;1,...,%;,) is contaminated then all of its coordinates z;
are assumed to be contaminated. Typically in the Tukey-Huber Contamination Model the
(uncontaminated) bulk of the data is assumed to follow a multivariate normal distribution.
Some of the implications of the above assumption are hence that (a) most observations fit
the multivariate normal assumption well; (b) outlying observations can be detected and
trimmed in a multivariate manner; and (c) affine equivariance can be invoked to justify
studying robustness and outlier detection only for a multivariate normal distribution with

mean vector 0 and the identity matrix I, for covariance.

In many applications, observations may only be outlying in a few coordinates, however,
and a significant fraction of observations may exhibit some degree of contamination. Alqallaf
et al. introduce a more flexible contamination model, the Independent Contamination Model
(ICM), that allows not only the observations x; to be contaminated independently of one
another, but also the coordinates z; 5, to be contaminated independently of any other coor-
dinates x; , within a given observation. Alqallaf et al. demonstrate that the MCD performs
poorly under this contamination model: while MCD(+*) has asymptotic breakdown point
1/2 under the Tukey-Huber Model, it can exhibit a breakdown point near 0 under the ICM.
Hence RSDs based on the MCD under the ICM might not be much more robust to outliers
than Mahalanobis distances based on the sample mean and covariance. Robust estimators
that build up an estimate of the dispersion matrix from consideration of pairs of observati-
ons are better suited to analyzing data whose outlier structure is more accurately captured
by the ICM. For example, the Orthogonalized Gnanadesikan-Kettenring (OGK) robust dis-
persion estimator, developed by Gnanadesikan and Kettenring (1972), Devlin et al. (1981),
and Maronna and Zamar (2002) is well-known estimator based on pairwise robust covariance

analysis. (Appendix A provides additional detail on the OGK estimator.) The quadrant cor-

Models.
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relation is another common robust dispersion estimate based on pairwise analyses (Huber,
1981).

In a previous paper (Martin et al., 2010) we used OGK-based RSDs to investigate the
existence and prevalence of multivariate outliers in the type of financial data used to build
fundamental factor models. Given the results of Cerioli et al. (2009) for the maximum-
breakdown point version of the MCD, however, it was of interest to understand whether OGK
and other robust dispersion-based estimates suffered from the same problem. In a companion
study (documented in Appendix A) we showed that several other robust dispersion estimates
exhibit, to varying degrees, the problems with the RSD test for outliers that Cerioli et al.
(2009) found for the MCD estimate. The results of the simulation show that the S-estimators
and the OGK also suffer from inflated average false positive rates like the MCD, for both
the individual and intersection tests. The OGK performs better than the MCD, in that
average false positive rates for OGK-based RSDs are inflated much less than the rates for
MCD-based RSDs, and the inflation factor is roughly independent of the dimension v.

Thus, correction methodologies are also needed for other robust dispersion estimators
such as S-estimators and the OGK estimate. A correction methodology for the OGK esti-
mator would be valuable due to the comparative computational simplicity of the OGK in
higher dimensions and its appeal in dealing with componentwise contamination scenarios.
We are not aware of a correction procedure for the OGK, however, and the IRMCD met-
hod does not obviously apply as the OGK and MCD estimates have very different structure.
Thus it seems for the time, OGK-based RSDs cannot be safely used for financial applications
unless the sample sizes are large (n > 500). For the moment, MCD-based distances with the
IRMCD procuedure are our only viable option for reliable RSD-based tests of outlyingness.

We have only considered outlier detection in a multivariate normal framework in this
paper. Real data, especially financial data, often exhibit skewness and heavy tails that give
rise to outliers. In such cases it becomes more difficult to define what an outlier is and to
identify them in the data. An important research direction for the future is outlier detection

in more general univariate and multivariate distributions such as elliptical and skewed ellip-
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tical distributions. We refer the reader to the recent book of Azzalini and Capitanio (2014)
and the references therein for further discussion of the latter.

Extreme value theory has also proven to be quite useful for modeling skewed and heavy-
tailed financial data. Some initial work on the compatibility of robust methods and extreme
value theory has been done by several authors. Vandewalle et al. (2004) showed how to
construct a robust estimator of the tail-index of a Pareto-type distribution using robust
regression techniques. Dell’Aquila and Embrechts (2006) showed how to use robust methods
to construct estimators for extreme value distributions that are not highly influenced by
observations that do not conform to same distribution as the bulk of the data. Goegebeur
et al. (2014) proposed a robust estimator for extreme quantiles of heavy-tailed distributions.
Additional research on applications of outlier detection in the context of extreme value models

would be very beneficial to financial practitioners focused on risk management.
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APPENDIX

2.A Croux-Haesbroeck Formulas for the Asymptotic Variance of the MCD Es-
timate

Croux and Haesbroeck (1999) derive the influence function for the MCD estimate Sy;cp un-
der the assumption of observations with a multivariate elliptical distribution. This influence
function can be used to calculate the variance of the MCD estimate, and hence, the variance
of the diagonal elements s;; that was needed to derive the method of moments estimate m in
Section 2.3.1. Hardin and Rocke (2005) calculated the variance of the s;; for the specific case
of a multivariate normal distribution using the Croux-Haesbroeck result, and provided their
formulas in an appendix to their paper. We reproduce these formulas here for the reader’s

convenience.

Here v = 1 — h/n is the (asymptotic) fraction of observations trimmed by the MCD

as in the main text, and ¢(v,1 — ) is the 1 — 7 quantile of a x? distribution and satisfies

L—y=P2 <q(r,1—7)).

(v,7) L=

c(v,v) =

P (X242 < qlr,1—7))
C2(V77) - ( +2 2 ( ))

ca(v,y) = 3es(v, )

bi(v,7) = c(v, 7)(03(1%_7)7— ca(v,7)




64

ba(v,7) = % + C%) <c (v, ) — M (62(% )+ 1__7))

vi(v,7) = (1= 7)bi(v,7)? (( Vl_y)—lf—l)—
+

2¢3(v,7)e(v,7)? (3 (bi(v,y) — vba(v,7))?
(v +2)ba(v, 7)(2b1 (v, 7) — vba(v,7)))

va(v,7) = (ba(v,7) (ba(v,7) = vha(v,7)) (1 = 7)) e(v,7)?

o Ul(%’y)
v(v,y) = —nvg(y, o

2.B Replicating the Hardin-Rocke Extension Simulations

The simulations used to build and to validate our Hardin-Rocke extension were performed on
a 16-node computing cluster managed by the University of Washington Department of Sta-
tistics. Each node has an 8-core, Intel Xeon®) E5410 2.33GhZ processor and 16GB of RAM,
and runs Debian Linux 7.1. We used R 3.0.2 (64-bit) to conduct the simulations. We imple-
mented the simulation and verification steps in two packages, CerioliOutlierDetection
and HardinRockeExtensionSimulations, described below.

Data analysis, modeling, and plotting were performed on a laptop running Windows 7
Ultimate SP 1 with an Intel@®) Core™ i7-3740QM processor running at 2.7GHz and 32GB of
RAM. A full listing of packages used (and their versions) is provided below to aid reprodu-

cibility of our results.

2.B.1 R Session Details

> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:

[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
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[4] LC_NUMERIC=C
[6] LC_TIME=English_United States.1252

attached base packages:
[1] parallel stats graphics grDevices utils datasets

[7] methods base

other attached packages:

[1] HardinRockeExtensionSimulations_1.0 rrcov_1.3-4
[3] pcaPP_1.9-49 mvtnorm_0.9-9997
[5] abind_1.4-0 CerioliQutlierDetection_1.0.0

[7] robustbase_0.90-2

loaded via a namespace (and not attached):
[1] DEoptimR_1.0-1 stats4_3.0.2

2.B.2 The CerioliOutlierDetection R Package

This R package implements the outlier detection methodology of Cerioli (2010) based on Ma-
halanobis distances and the minimum covariance determinant (MCD) estimate of dispersion.
It also implements the extension to Hardin and Rocke (2005) developed in this paper. The
package is available on CRAN (Green and Martin, 2014).

2.B.3 The HardinRockeEztensionSimulations R Package

This package contains scripts to perform the simulations described in this paper. It can be

downloaded via git or a web browser from Christopher Green’s GitHub repository:

http://christopherggreen.github.io/HardinRockeExtensionSimulations/

The easiest way to install this package in R is via the devtools package:

> require(devtools)

> install_github("christopherggreen/HardinRockeExtensionSimulations")
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2.C Simulated Degrees of Freedom and Consistency Factor

A table containing the Wishart degrees of freedom parameter m and consistency factor ¢
calculated via simulation is available in the HardinRockeExtensionSimulations package

described above. These values were used to fit the model shown in Equation (2.15).

2.D Full Results of Out of Sample Tests of Proposed Modification to Hardin
and Rocke (2005) Methodology

Table 2.5 provides the out of sample results from testing the model shown in Equation (2.15).
The table shows the ratio of the predicted degrees of freedom to the simulated degrees of

freedom.
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2.E Standard Deviations for FSRMCD and IRMCD Simulation Tests

Table 2.6 provides standard deviations for the simulation results presented in Table 2.4.
Standard errors for entries in the latter table can be calculated by dividing the corresponding

entry of this table by 1/5000.
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Table 2.6: Monte Carlo standard deviations of simulation tests of FSRMCD and IRMCD
implementations. Standard errors for the quantities in Table 2.4 can be obtained by dividing
the corresponding entries in this table by 1/5000.

Dimension Method n=40 n=60 n=90 n=125 n =200 n =400

y=7"
L —5 FSRMCD 0.113 0.115 0.119 0.107 0.112 0.100
n IRMCD 0.123  0.105  0.113 0.105 0.102 0.092
U =10 FSRMCD 0.150 0.111 0.095 0.100 0.091 0.089
N IRMCD 0.141 0.118 0.100 0.098 0.090 0.091
U —15 FSRMCD 0.141 0.111 0.097 0.104 0.092 0.093
n IRMCD 0.149 0.103 0.097 0.108 0.093 0.092
v =0.25
L —F FSRMCD 0.113 0.108 0.102 0.099 0.111 0.097
N IRMCD 0.115 0.118 0.108 0.108 0.101 0.102
U =10 FSRMCD 0.113 0.112 0.110 0.118 0.101 0.100
N IRMCD 0.120 0.103 0.082 0.100 0.110 0.091
U —15 FSRMCD 0.108 0.108 0.102 0.086 0.092 0.089
a IRMCD 0.111 0.107  0.109 0.095 0.100 0.099
v =0.05
L —F FSRMCD 0.100 0.105 0.108 0.105 0.105 0.107
N IRMCD 0.105 0.109 0.101 0.102 0.102 0.100
U —10 FSRMCD  0.106  0.106  0.115 0.097 0.109 0.101
n IRMCD 0.114 0.112 0.102 0.118 0.115 0.100
U= 15 FSRMCD 0.136 0.113 0.120 0.111 0.104 0.113
N IRMCD 0.131 0.105 0.122 0.097 0.109 0.093
v =0.01
L —F FSRMCD 0.077  0.090 0.109 0.100 0.076 0.105
N IRMCD 0.076 0.095 0.089 0.087 0.100 0.105
U —10 FSRMCD 0.085 0.097  0.071 0.101 0.092 0.098
a IRMCD 0.085  0.081  0.094 0.080 0.086 0.095
U —15 FSRMCD 0.093 0.088 0.073 0.083 0.090 0.098

IRMCD 0.090  0.085  0.092 0.103 0.092 0.099
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2.FF Power Calculations for IRMCD with the Modified Estimator of m

2.F.1 Qverview

We examined the power of IRMCD with our modified estimator of the Wishart parameter
m to detect outliers when they are present in the data. We are particularly interested in
its performance relative to IRMCD with the Hardin-Rocke estimator of m. We investigate
the power of these outlier detection rules using simulation studies identical to those used in
Cerioli (2010), with minor modifications to allow for v < v*. We review the details of the

simulation below for the convenience of the reader.

2.F.2 Methodology

Let 7 be the fraction of observations that are “contaminated”. Given a sample size n and
dimension v, we generate 5000 r-dimensional samples of size n from a mixture distribution:
n(1—7) of the observations are drawn from a multivariate normal distribution N(0,I), while
the remaining n7 observations come from a contaminating distribution. We will consider

three types of contaminating distributions:

e A location-shift contamination model N(A1,I) where the expected values of all varia-

bles are shifted by A > 0;

e A radial contamination model N(0,vI) where marginal variances of the variables are

inflated by ¥ > 0; and

e A t distribution contamination model where observations are generated from a multi-

variate ¢ distribution with ( > 1 degrees of freedom.

We consider these scenarios with a small amount of contamintation 7 = 0.05 and a moderate

amount of contamination 7 = 0.20.
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Let a be the nominal size of the outlier detection tests. In each scenario, we compute
MCD()-based RSDs and test observations for outlyingness at the a; level using each of the

following four approaches.

RMCD Distances are calculated using the reweighted MCD(~) and tested against the 1 — «

quantile of a x?2 distribution, where 1 — a = (1 — a;)/™.

RMCD _ind Distances are calculated using the reweighted MCD(y) and tested against the

1 — a; quantile of a x2 distribution.
IRMCD_ HR IRMCD(v) using the Hardin-Rocke estimator of the Wishart parameter m.

IRMCD GM IRMCD(v) using the estimator of the Wishart parameter m developed in
this chapter.

We consider three values of the MCD trimming parameter v: v*, 0.25, and 0.05.

We calculate the power of each approach to detect outliers as the ratio of the number
of contaminated observations detected to the total number of contaminated observations.
Note that, in contrast to Cerioli (2010), we do not define the power for the cases of no
contamination (i.e., A = 0, ¢ = 1, and ( = oo) to be the empirical false positive rate for
testing the hypothesis of no outliers in the data. We also use more values of the contamination
parameter (A, ¥, or () as appropriate. Our results for small values of contamination will

thus look different from those presented in Cerioli (2010).

2.F.3 Results

Figures 2.17 and 2.20 show the power of the four approaches for detecting a shift in location
for MCD(7*)-based RSDs. Figures 2.18 and 2.21 show the corresponding results for the
MCD(0.25)-based RSDs, and Figures 2.19 and 2.22 show the results for the MCD(0.05)-
based RSDs. For the v = v* and v = 0.25 cases, all methods perform well, in all sample size

and dimension combinations considered, for detecting a shift of at least 2 when the amount
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of contamination is small (7 = 0.05). For the larger fraction of contamination 7 = 0.20,
both IRMCD approaches are less powerful than the simple chi-squared based rules (RMCD
and RMCD _ind) in small samples (n = 60 and n = 120). When the dimension is v = 20
all of the rules show markedly decreased power to detect a location shift, with the IRMCD
approaches again being less powerful than the chi-squared approaches.

The choice of v = 0.25 generally results in lower power, other things being equal, com-
pared to v = ~*. This is not surprising given that the breakdown point of the MCD(~)
covariance estimate is 7. The MCD(0.25)-based distances are hence more influenced by the
outliers themselves, which inhibits our ability to detect more moderate outliers. Moving to
an even smaller trimming fraction, v = 0.05, makes it even harder for the four approaches
to detect outliers in the data sets. When the contamination fraction is 7 = 0.20 but the
trimming fraction is only v = 0.05, all of the methods are rather useless for detecting shifts
in location (Figure 2.22).

Figures 2.23 and 2.26 show the results for detecting observations arising from a marginal
distribution with a larger variance using MCD(v*)-based RSDs. Figures 2.24 and 2.27 show
the results for v = 0.25, and Figures 2.25 and 2.28 show the results for v = 0.05. In
small samples n = 60 and small dimensions, neither IRMCD approach is as powerful as the
RMCD approaches, but as the sample size increases the four methods agree more closely
for both contamination fractions. As the dimension increases, however, the two IRMCD
methods are actually more powerful than the chi-squared approaches for moderate amounts
of contamination, particularly in smaller samples. This true for the three values of v we
tested, but the difference between the approaches is larger for v = 0.25 and v = 0.05.

Figures 2.29 and 2.32 show the results for detecting observations arising from a t distri-
bution using MCD(~*)-based RSDs. Figures 2.30 and 2.33 show the results for v = 0.25,
and Figures 2.31 and 2.34 show the results for v = 0.05. In contrast to the location-shift
and variance-inflation cases, here power decreases for all methods as the ¢ degrees of freedom
parameter ¢ increases: with larger values of { the t distribution looks more like the normal

distribution from which the non-contaminated sample is drawn, so it becomes harder to
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distinguish the “outliers” from the non-outliers.

Overall, we see that the IRMCD is less powerful, compared to the chi-squared approaches,
for detecting contaminated values from a ¢ distribution, for all values of v considered. For
this type of contamination, however, IRMCD and the chi-squared approaches are closer in

power for smaller values of .

2.F.4 Summary

Under all the contamination models considered here, the power of the IRMCD with the
Hardin-Rocke estimator of m and with the estimator of m developed in this chapter is
approximately the same. Hence our improved estimator of m leads to more accurate false

positive rates in small samples and with small values of v without comprising the power of

the original IRMCD.
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Figure 2.17: Power of MCD-based outlier detection rules under a multivariate location-shift
contamination model for v = v* and contamination rate 7 = 0.05. Results are shown for
dimensions v = 5, 10, 20, depicted in columns, and sample sizes n = 60, 120, 200, depicted in
rows. The four outlier detection rules shown are the IRMCD with our modified estimator of
the Wishart parameter m (IRMCD.GM, blue dashed line); IRMCD with the original Hardin-
Rocke estimator of m (IRMCD.HR, black solid line); RSDs based on the reweighted MCD
and tested against a chi-squared distribution with a multiplicity-correction to the test size
(RMCD, green dashed line); and RSDs based on the reweighted MCD and tested against a
chi-squared distribution (RMCD _ind, red dashed line).
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Figure 2.18: Power of MCD-based outlier detection rules under a multivariate location-shift

contamination model for v = 0.25 and contamination rate 7 = 0.05. The plot setup is

identical to that

of Figure 2.17.
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Figure 2.19: Power of MCD-based outlier detection rules under a multivariate location-shift
contamination model for v = 0.05 and contamination rate 7 = 0.05. The plot setup is

identical to that of Figure 2.17.
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Figure 2.20: Power of MCD-based outlier detection rules under a multivariate location-shift

contamination model for v = * and contamination rate 7 = 0.20. The plot setup is identical

to that of Figure 2.17.
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Figure 2.21: Power of MCD-based outlier detection rules under a multivariate location-shift

contamination model for v = 0.25 and contamination rate 7 = 0.20. The plot setup is

identical to that of Figure 2.17.



1.00+

0.75+

0.50+

0.25+

0.00+
1.00+

0.0054
1.00+

0.75+

0.50+

0.25+

0.00+

83

09

.A.N” P R ]

METHOD
— IRMCD.GM
— IRMCD.HR
- - RMCD

- = RMCD_ind

=u

(45

Py

00c=u

- ws oy S & g wem , pm I mm s == a g = =Em s

255075100 25 5.0 7.510.0 25 50 7.510.0
SHIFT IN LOCATION A

Figure 2.22: Power of MCD-based outlier detection rules under a multivariate location-shift

contamination model for v = 0.05 and contamination rate 7 = 0.20. The plot setup is

identical to that of Figure 2.17.
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Figure 2.23: Power of MCD-based outlier detection rules under a multivariate radial con-
tamination model for v = ~+* and contamination rate 7 = 0.05. Results are shown for
dimensions v = 5, 10, 20, depicted in columns, and sample sizes n = 60, 120, 200, depicted
in rows. The four outlier detection rules shown are the IRMCD with our modified estima-
tor of the Wishart parameter m (IRMCD.GM, blue dashed line); IRMCD with the original
Hardin-Rocke estimator of m (IRMCD.HR, black solid line); RSDs based on the reweighted
MCD and tested against a chi-squared distribution with a multiplicity-correction to the test
size (RMCD, green dashed line); and RSDs based on the reweighted MCD and tested against
a chi-squared distribution (RMCD ind, red dashed line).
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Figure 2.24: Power of MCD-based outlier detection rules under a multivariate radial conta-
mination model for v = 0.25 and contamination rate 7 = 0.05. The plot setup is identical

to that of Figure 2.23.
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Figure 2.25: Power of MCD-based outlier detection rules under a multivariate radial conta-
mination model for v = 0.05 and contamination rate 7 = 0.05. The plot setup is identical

to that of Figure 2.23.
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Figure 2.26: Power of MCD-based outlier detection rules under a multivariate radial conta-
mination model for v = v* and contamination rate 7 = 0.20. The plot setup is identical to

that of Figure 2.23.
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Figure 2.27: Power of MCD-based outlier detection rules under a multivariate radial conta-
mination model for v = 0.25 and contamination rate 7 = 0.20. The plot setup is identical

to that of Figure 2.23.
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Figure 2.28: Power of MCD-based outlier detection rules under a multivariate radial conta-
mination model for v = 0.05 and contamination rate 7 = 0.20. The plot setup is identical

to that of Figure 2.23.
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Figure 2.29: Power of MCD-based outlier detection rules under a multivariate ¢-distribution
contamination model for v = v* and contamination rate 7 = 0.05. Results are shown for
dimensions v = 5, 10, 20, depicted in columns, and sample sizes n = 60, 120, 200, depicted in
rows. The four outlier detection rules shown are the IRMCD with our modified estimator of
the Wishart parameter m (IRMCD.GM, blue dashed line); IRMCD with the original Hardin-
Rocke estimator of m (IRMCD.HR, black solid line); RSDs based on the reweighted MCD
and tested against a chi-squared distribution with a multiplicity-correction to the test size
(RMCD, green dashed line); and RSDs based on the reweighted MCD and tested against a
chi-squared distribution (RMCD _ind, red dashed line).
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Figure 2.30: Power of MCD-based outlier detection rules under a multivariate ¢-distribution
contamination model for v = 0.25 and contamination rate 7 = 0.05. The plot setup is

identical to that of Figure 2.29.
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Figure 2.31: Power of MCD-based outlier detection rules under a multivariate ¢-distribution

contamination model for v = 0.05 and contamination rate 7

identical to that of Figure 2.29.

0.05. The plot setup is
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Figure 2.32: Power of MCD-based outlier detection rules under a multivariate ¢-distribution

contamination model for v = y* and contamination rate 7 = 0.20. The plot setup is identical

to that of Figure 2.29.
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Figure 2.33: Power of MCD-based outlier detection rules under a multivariate ¢-distribution

contamination model for v = 0.25 and contamination rate 7

identical to that of Figure 2.29.
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