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Chapter 1

Introduction

The term “heavy-tailed distribution” refers to statistical distributions with more mass in
their tails than the standard normal (a.k.a. Gaussian) distribution. In essence, greater
mass in the tails of these distribution means that, under these models, extreme events
are more likely to occur than under the normal model. Heavy-tailed distributions have
become important tools in modern financial work, where the failure of the normal model
to adequately capture the observed frequency of extreme events (such as market crashes)
is (or should be, by now) well-known [Tei71, MRP98, RM00].

One of the earliest uses of distributional modeling in finance was in the study of
changes in price between transactions in speculative markets [Fam63]. The seminal works
of Bachelier [Bac67] and Osborne [Osb59] gave theoretical arguments in support of the
hypothesis of approximately normally distributed price changes. Empirical work by Kendall
[KH53] and others supported this hypothesis while at the same time suggesting that the
tails of the empirical distributions of price changes where heavier than those of the normal
distribution [Fam63]. This lead to investigations by Mandelbrot [Man63a, Man63b] and
Fama [Fam63] into alternative models for price change data.

Mandelbrot argued for distributional models that satisfied the Pareto law, at least
in the tails of the distirbution [Man63a]. The stable distributions of Lévy [Lév24] were
natural candidates for models due to their closure under certain types of finite sums of
random variables and their status as the only possible limits of infinite sums of random
variables. Unfortunately, the lack of closed-form formulas for the stable distributions
hindered their widespread use. Numerical methods for stable distributions were available
by the early 70’s [DuM71], but computers at the time were not fast enough to permit large
empirical studies. It was not until the 90’s that faster algorithms and faster hardware made
the use of stable distributions practical. In the meantime, other heavy-tailed distributions,
such as Student’s t and the various extreme-value distributions, served as computationally
feasible substitutes.

Heavy-tailed models have found their way into all areas of finance. This work is far
from a comprehensive investigation of all the uses of heavy-tailed distributions in finance.
Rather, we have limited our focus to some of the more practical concerns when using
heavy-tailed distributions.

• How well do estimators of stable distribution parameters perform in the presence of
outliers?

1



2 CHAPTER 1. INTRODUCTION

• Is the extra effort required by stable distributions warranted? Would a simpler to use
model, such as the t model, give results that are just as good?

• In the location-scale model, what is the correlation between the tail-fatness parame-
ter and scale?

• Is tail fatness related to firm size? If so, how?



Chapter 2

Univariate Stable Distributions

2.1 Introduction
Stable distributions play an important role in the theory of probability—they are the only
possible limiting distributions of infinite sums of independent, identially-distributed (iid)
random variables. When the random variables all have finite variances, this result is more
commonly known as the Central Limit Theorem, and the limiting distribution is the familar
normal (or Gaussian) distribution. The other members of the stable family, the limiting
distributions when the restriction of finite variance is removed, are just as interesting as
the normal, but much harder to study due to the lack of closed-form formulas for their
densities and distribution functions.

The concept of a stable distribution was first introduced by Lévy around 1924 [Lév24]
in his studies of sums of independent random variables [Hal81]. Some of the basic details
of stable distributions remained unclear, though, until the 1936 paper of Khintchine and
Levy [KL36].

According to Lévy’s original definition, a distribution F is “stable” if for each pair of
positive real numbers a1 and a2 there exists another positive real number a such that

F(a1x)∗F(a2x)≡ F(ax). (2.1.1)

(Here ∗ denotes convolution.) This definition, however, has a significant drawback—
in certain cases, stability is not preserved under translation, i.e., F(x + b) is not stable
even though F(x) is. This led Lévy to introduce the weaker notion of “quasi-stability”:
a distribution F is quasi-stable if for all real numbers a1, b1, a2, and b2, with a1 and a2
positive, there exist real numbers a and b, with a positive, such that

F(a1x+b1)∗F(a2x+b2)≡ F(ax+b). (2.1.2)

In the modern literature, Lévy’s quasi-stable distributions are known as stable distrib-
utions, while his “stable” distributions are referred to as strictly stable distributions[Hal81].

Stable distributions have popped up in numerous scientific fields over the years. The
earliest known occurrence of a stable distribution is generally agreed to be the 1919 paper
of the Danish astronomer Holtsmark [HC73, Zol86, Hol19]. In his studies of the gravita-
tional field of stars he derived (via Fourier transform methods) a probability distribution

3



4 CHAPTER 2. UNIVARIATE STABLE DISTRIBUTIONS

for the gravitational force exerted by a group of stars at a point in space. This distribution,
now known in astrophysics as the “Holtsmark” distribution, corresponds to a symmetric
stable distribution with index α = 3/2 (see below).1

Stable distributions have also proven useful in the study of Brownian motion [Fel71],
in economics and finance [Man63a, Man63b, Fam63], in electrical engineering [HC73],
and in telecommunications [Kur01]. We will discuss their applications in finance in a later
chapter; the interested reader can refer to the citations for more information about other
applications.

2.1.1 Other Types of Stability
In this work we shall only be concerned with stability under (nonrandom) summation,
often called Paretian stability due to the Pareto-like behavior of the tails of such stable
distributions. There are, however, other types of stability (and the resulting distributions)
that could be discussed. For instance, we could consider stability with respect to the max-
imum operation, i.e., distributions for which max{Xi : i = 1, . . . ,n} is equal in distribution
to X1 (after suitable translation and rescaling) whenever the random variables Xi are iid.
We could also consider stability under random summation, etc. We refer the reader to the
work of Rachev and Mittnik [RM00] for more information on such matters.

2.2 Theoretical Background

2.2.1 Introduction and Basic Definitions
First, let us start with a definition of a stable distribution that is more modern than that of
Lévy.

Definition 2.2.1. A (non-degenerate) distribution F is stable if, for all n ∈ N, there exist
constants cn > 0 and dn such that, whenever X1,X2, . . . ,Xn, and X are independently and
identically distributed with distribution function F, the sum X1 + · · ·+Xn is distributed as
cnX +dn.[DuM71].

A random variable X is termed stable if its distribution function is stable.
If dn = 0 for all n, the distribution (random variable, etc.) is said be strictly stable.
We will show below that the coefficient cn must take the form n1/α for some α ∈

(0,2]. The exponent α is called the index or characteristic exponent of the distribution.
The easiest way to develop stable distributions is via characteristic functions [Fel71,

Lam96]. Let φk(t) and φ(t) be the characteristic functions of Xk and X , respectively. The
characteristic function of the sum X1 + · · ·+ Xn is simply the product of the character-
istic functions of the summands, i.e., ∏

n
k=1 φk(t). Since the Xk are iid the characteristic

functions φk(t) are all identical, so this product equals φ(t)n.

1Although Holtsmark’s work predates that of Lévy, Holtsmark only studied the specific case mentioned.
It was Lévy who first introduced the notion of stability and who did the first in depth work on the stable
family; thus he is commonly credited with their invention.



2.2. THEORETICAL BACKGROUND 5

The characteristic function of cnX + dn, on the other hand, is eidntφ(cnt). Since the
two quantities X1 + · · ·+ Xn and cnX + dn are equal in distribution, their characteristic
functions must agree everywhere, so we must have

φ(t)n = eidnφ(cnt). (2.2.3)

Let us consider first the case of F symmetric about x = 02. The characteristic function
of a symmetric distribution is real-valued3. Furthermore, it is a continuous, even function
of its argument. Finally, we always have φ(0) = 1 for a characteristic function.

Next, notice that by symmetry, we have

−(X1 + · · ·+Xn)
d= X1 + · · ·Xn

d= cnX +dn
d=−cnX +dn,

which forces dn = 0. Thus φ(t)n = φ(cnt). If cn = 1 for all n, then φ(t) is identically 1,
and F is a degenerate distribution. Since we have excluded that case, cn 6= 1 for at least
one n.

We now show that φ(t) is supported on the entire real line. Suppose to the contrary
that φ(t) vanishes somewhere in R. Then because it is a continous function that attains the
value 1 at 0, the zero set of φ(t), restricted to the positive real line, must have a smallest
element t0. Using our previous observation we see that

0 = φ(t0)n = φ(cnt0)

and

0 = φ(t0/cn)n = φ(t0).

Hence both cnt0 and t0/cn are also zeros of φ(t). But, since cn is positive and not 1, one
of these numbers is strictly smaller than t0, which contradicts the choice of t0. Hence, we
conclude that φ(t) > 0 for all t ∈ R.

Now that we know φ(t) is a positive function, we may safely work with its logarithm,
which we will call ψ(t). Since φ(t) is real-valued and bounded above by 1, ψ(t) is a real-
valued continuous nonpositive function. In terms of ψ(t), our functional equation (2.2.3)
for the characteristic function of a stable distribution is

nψ(t) = ψ(cnt). (2.2.4)

At this point, it is not entirely obvious that the constant cn is unique for a fixed n. Suppose
that (for a given n) there are two constants, cn and c′n, for which (2.2.4) holds. Without
loss of generality we may assume that cn > c′n. It is clear that

ψ

(
c′n
cn

t
)

= ψ(t).

2Our argument follows that of Lamperti[Lam96].
3The characteristic function of −X is the complex conjugate of that of X . By symmetry, however, X and

−X are identically distributed and hence, have identical characteristic functions. Thus, imaginary part of
the characteristic function of X must vanish. The same reasoning can be used to show that the characteristic
function of X is an even function.
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By repeated use of this relation, we can actually establish the relation

ψ

([
c′n
cn

]k

t

)
= ψ(t),

for every k ≥ 1. Since cn > c′n, c′n/cn < 1, and as k → ∞, c′n/cn → 0. Since ψ(t) is
continuous, we must have ψ(t) = ψ(0) = 0 for all t. This means that F is a degenerate
distribution, which contradicts our assumption about F . Thus cn = c′n, i.e., cn is unique
[Lam96].

Our functional relation (2.2.4) is multiplicative, i.e., it implies that for any two inte-
gers m,n

ψ(cmnt) = mnψ(t) = mψ(cnt) = ψ(cmcnt).

Since the constants cn, cm, and cmn are unique, this forces cmn = cmcn for all pairs of
positive integers m and n.

Our functional relation (2.2.4) will be easier to solve if we allow n to take values in
the positive real-numbers. To this end, we must extend our coefficient identity cmn = cmcn
to positive real indices. We switch to a more traditional notation c(y) for the coefficients
here to avoid confusion; for any integer n we will have c(n) = cn. It is clear that our
argument establishing the uniqueness of the coefficients still holds as well.

We can easily see that c(1) = 1. We define the extension of the coefficient identity to
reciprocals of integers in the obvious way: c(1/n) = 1/c(n). It then follows that for any
rational number p/q, c(p/q) = c(p)/c(q), so we have extended our identity to the positive
rationals. We can check that our functional relationship still holds.

qψ(t) = ψ(c(q)t) =⇒ ψ(t)/q = ψ(t/c(q)) = ψ(c(1/q)t).

Since the rationals are dense in R, for every real number y there is a sequence y j of rationals
that converges to y. Using the functional relation (2.2.4), we have for any t

lim
j→∞

ψ(c(y j)t) = lim
j→∞

y jψ(t) = yψ(t).

If the sequence {c(y j)} had 0 as a limit point, then the left-hand side of the above equation
vanishes for all t, and F is degenerate. Since y j > 0, we can make the same argument
on the analogous equation that results from considering c(1/y j) to see that {c(y j)} does
not diverge. Thus the sequence {c(y j)} is bounded away from 0 and ∞, and hence has
a subsequence that converges to some positive number y′. But in fact all subsequences
of {c(y j)} must converge to y′, by the uniqueness of the coefficients c(·). Thus the limit
limc(y j) exists and is positive. Moreover, the limit is independent of the sequence taking
to y [Lam96]. Therefore, it makes sense to define c(y) as limc(y j). With this definition
in hand, we can verify that the coefficient relationship c(xy) = c(x)c(y) and the functional
relationship (2.2.4) still hold. We claim that c(y) is a continuous function.

Let y j be a sequence of positive real numbers that approaches a limit y. From our
functional relationship we have

lim
j→∞

ψ(c(y j)t) = lim
j→∞

y jψ(t) = yψ(t) = ψ(c(y)t).
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By repeating the argument we used to justify the limit for rational y j, we can show that the
sequence {c(y j)} has a unique (positive) limit that is independent of the sequence used to
reach y. By the uniqueness of the coefficients, we must have limc(y j) = c(y). Hence c(y)
is a continuous function.

We claim that c(x) is strictly increasing.

Lemma 2.2.1. The “coefficient function” c(x) is strictly increasing.

Proof. [Shorack [Sho00]] We first prove that the integer-indexed coefficients cn are in-
creasing. It suffices to show that cn/cn+1 ≤ 1, or equivalently, that (cn/cn+1)

k is bounded
above for all n and k, independently of n and k.

From the coefficient relationship, we know that (cn)k = cnk , for all n and k. Let a = nk,
and let a + b = (n + 1)k, so that (cn/cn+1)k = ca/ca+b. By the definition of stability, we
know that

X1 + · · ·+Xa
d= caX

X1 + · · ·+Xa+b
d= ca+bX .

For any positive real number y, consider P(X > ca
ca+b

y). We have

P(X >
ca

ca+b
y) = P(ca+bX > cay) = P(X1 + · · ·+Xa+b > cay)

= P(caX + cbX > cay)≥ P(X > y)P(X > 0).

By symmetry, P(X > 0) = 1/2, so the RHS vanishes if and only if P(X > y) = 0, which
by symmetry forces X to be degenerate. Hence, we conclude that P(X > ca

ca+b
y) is bounded

away from zero for every y, which implies that ca
ca+b

cannot be arbitrarily large and thus,
must be bounded above independently of a and b.

Next, we prove the claim for rational numbers. Suppose m/n≤ p/q. Then mq≤ np,
so c(mq)≤ c(np) by the proof for integers. But c is multiplicative, so we have c(m)/c(n)≤
c(p)/c(q), which is equivalent to c(m/n) ≤ c(p/q). Thus, the lemma holds for rational
numbers.

The extension to real numbers is now immediate—for any real x and y, there are se-
quences of rationals xn and yn respectively that increase to x and y. Since c(x) is continuous
and c(xn)≤ c(yn) for each n, we conclude that c(x)≤ c(y) for x and y.

To see that c(x) is strictly increasing, suppose c(x) = c(y) but x 6= y. Then by the
properties of c, c(x/y) = c(y/x) = 1. Moreover, c((x/y)k) = c((y/x)k) = 1 for any integer
k. Since c is increasing, though, c is 1 for any z that falls between two powers of x/y and
y/x. The powers of x/y and y/x converge to 0 and ∞, respectively, so in fact c is identically
1, which implies that the distribution in question is degenerate. Hence x = y.

We are now in familiar territory—the functional equation c(xy) = c(x)c(y) has only
one family of solutions when c(x) is required to be continuous and strictly increasing,
namely, c(x) = xp for some exponent p > 0.

Lemma 2.2.2. All solutions of the functional equation c(xy) = c(x)c(y), x,y > 0, subject
to the condition that c(x) is continuous and strictly increasing, take the form c(x) = xp for
some exponent p > 0.
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Proof. Clearly the function c(x) = xp satisfies the functional equation for any value of
p. To see that these are the only solutions, suppose c̃(x) is a solution. Clearly c̃(1) = 1,
c̃(xn) = c̃(x)n for any x > 0 and any integer n, c̃(1/x) = 1/c̃(x) for any x > 0, and c̃(x/y) =
c̃(x)/c̃(y) for any x,y > 0.

c̃(x) is a strictly positive function (when restricted to (0,∞)), for if it had a zero x0
in (0,∞) the functional relation would imply that c̃ is infinite at 1/x0, in violation of the
assumed continuity of c̃. The logarithm of c̃ is thus well-defined.

Consider the function f (x) = log c̃(x). From the properties of c̃(x) we know that f (x)
is a continuous function satifying the relations f (xy) = f (x)+ f (y), f (xn) = n f (x), and
f (1/x) =− f (x). We shall show that f (x) = p logx for some p > 0, which will prove the
claim.

Consider the difference quotient ( f (x + h)− f (x))/h. From the properties of f , we
have

f (x+h)− f (x)
h

=
f
( x+h

x

)
h

=
1
x

f (1+h/x)
h/x

.

If we take the limit of both sides as h→ 0, we see that the derivative f ′(x), satisfies

f ′(x) =
1
x

lim
h/x→0

f (1+h/x)
h/x

=
1
x

f ′(1),

provided both sides exist.
From the relation f (xn) = n f (x), we can deduce that f (x)/n = f (x1/n). This implies

that f ′(1) can be written as
lim
k→0

f ((1+ k)1/k).

Since f is continuous, we can take the limit inside of f , where we immediately recognize
limk→0(1 + k)1/k = e. Hence we have established that f ′(1) exists and is finite (and in
fact, equals f (e)). Therefore we know that f ′(x) = f (e)/x for all x > 0, which means that
f (x) = f (e) logx. Hence, c̃(x) = xp, where p = log c̃(e); since c̃(x) is strictly increasing,
we must have p > 0 as claimed.

With this new bit of information, our functional relationship becomes

ψ(ypt) = yψ(t)

where p is still unspecified. If we let t = 1 and make the change of variable x = y1/p,
where y > 0, we obtain the representation

ψ(x) = ψ(1)x1/p,x > 0.

Since φ is even, we know that ψ(−x) = ψ(x), hence the complete definition of ψ(x) is

ψ(x) = ψ(1)|x|1/p.

Hence, the characteristic function φ(t) of a symmetric stable distribution F has the form

φ(t) = e−c|t|α , (2.2.5)
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where c =−ψ(1) > 0 is a positive constant and α = 1/p.
The exponent α is not 0, for that would result in a degenerate distribution. It cannot

be negative, for then φ(t) would be infinite at the origin (instead of 1). To see that α is at
most 2, suppose that α > 2, and consider the second derivative of φ(t) at the origin. Recall
that the characteristic function is defined as

φ(t) =
∫

eitxdF(x).

The second derivative of φ(t) at 0 is given by −
∫

x2dF(x), i.e., it is the negative of the
second central moment of F . On the other hand, directly differentiating our expression
for φ(t) shows that φ ′′(0) = 0 if α > 2. Hence, the second moment (and hence, the
variance) of F not only exists but is 0. This forces F to be a degenerate distribution, with a
constant characteristic function. For α > 2 our form of φ(t) is clearly not constant, so we
conclude that α ≤ 2. (In addition, we see that e−c|t|α is not the characteristic function of
any distribution when α > 2.) This finishes the derivation of the form of the characteristic
function of a symmetric stable distribution.

In general the characteristic function of a stable distribution takes the form

φ(t) = exp(iµt−σ
α |t|α [1− iβ sgn(t)ω(t,α)]) , (2.2.6)

where

ω(t,α) =

{
tan(π

2 α), α 6= 1,

− 2
π

log |t|, α = 1.
(2.2.7)

Here µ ∈R is a location parameter, σ > 0 is a scale parameter, and β ∈ [−1,1] is a “skew-
ness” parameter (not be confused with the coefficient of skewness of a general distribu-
tion)4. We will denote the corresponding stable density and stable distribution function
as sα,β (x;σ ,µ) and Sα,β (x;σ ,µ), respectively, and we will often use shorthand such as
“X ∼ Sα,β (x;σ ,µ)” to indicate stable random variables.

The derivation of the characteristic function of an asymmetric stable distribution is
harder. First, if X is an asymmetric stable random variable, then, letting X1 and X2 denote
iid copies of X , we can consider the symmetric stable random variable X1−X2. If φ(t)
denotes the characteristic function of X , then the characteristic function of X1−X2 will
be φ(t)φ(t), which is equal to |φ(t)|2. Since the resulting random variable is symmetric,
we know that its characteristic function has the form given in equation (2.2.5). Hence, we
know that

|φ(t)|2 = e−c|t|α , (2.2.8)

for some c > 0 and some α ∈ (0,2]. This fact alone does not get us very far.
The classical approach to proving the representation (2.2.6) uses Lévy’s representa-

tion of the characteristic function of an infinitely divisible law [Hal81]. This material is
more technical than what we have discussed so far; the ambitious reader may consult the
text of Gnedenko and Kolmogorov [GK68] or the second volume of Feller’s classic text
[Fel71]. We now instead discuss some of the interesting properties of stable distributions.

4The paper of Khintchine and Lévy [KL36] discusses why β must lie in the interval [−1,1]
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2.2.2 Interpretations of the Parameters

The µ parameter appearing in Equation (2.2.6) is a location parameter: if X is any random
variable and r is any real number, the characteristic function of X + r is eirt times the
characteristic function of X . It is easy to see that when X has the Sα,β (x;σ ,µ) distribution,
this factor readily folds into the iµt term of (2.2.6) to give the characteristic function
of a random variable with a Sα,β (x;σ ,µ + r) distribution. Thus in our studies of stable
distributions we can often restrict our attention to those with µ = 0.

The σ parameter behaves like a scale parameter—most of the time. Consider the
random variable aX , where a 6= 0 is a real number. If φ(t) is the characteristic function
of X , then φ(at) is the characteristic function of aX . For a stable random variable X , the
characteristic function of aX will be

φ(at) = exp(iaµt−σ
α |at|α [1− iβ sgn(at)ω(at,α)]) .

= exp(i(aµ)t− (|a|σ)α |t|α [1− isgn(a)β sgn(t)ω(at,α)]) .

When α 6= 1, the resulting characteristic function is that of a Sα,sgn(a)β (x; |a|σ ,aµ) random
variable. Hence, for a = 1

σ
, 1

σ
X has a Sα,β

(
x;1, µ

σ

)
distribution.

When α = 1, however, the ω function involves t and hence contributes an extra term
that folds into the location term iaµt.

φ(at) = exp
(

iaµt−σ |at|
[

1+ iβ sgn(at)
2
π

log |at|
])

= exp
(

iaµt−σ |at|
[

1+ iβ sgn(at)
2
π

(log |a|+ log |t|)
])

.

We recognize the resulting characteristic function as that of a random variable with a
Sα,sgn(a)β

(
x; |a|σ ,aµ− 2

π
aσβ log |a|

)
distribution. Therefore, rescaling a stable random

variable of index 1 by (1/σ) shifts the location parameter nonlinearly [ST94].
The β parameter is known as a “skewness” parameter since it controls the (a)symmetry

of the distribution5. It can be shown [DuM71] that β satisfies the relation

lim
x→∞

1−Sα,β (x)−Sα,β (−x)
1−Sα,β (x)+Sα,−β (−x)

= β . (2.2.9)

The numerator in Equation (2.2.9) is the amount by which the upper tail mass exceeds the
lower tail mass, while the denominator is the total mass in the tails.

When β = 0, the density of the distribution is symmetric about µ , since in that case
the characteristic function of X − µ is real-valued. (So conversely symmetry about µ

forces β = 0.) Furthermore,

1. If α ∈ [1,2], the support of a stable density is all of R;

2. If α ∈ (0,1) and |β |= 1, the support of the density is sgn(β )(0,∞). [ST94, DuM71]

5It does not, however, correspond to the statistical concept of skewness.
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2.2.3 Properties of Stable Distributions
We claimed above that the constant cn in the definition of a stable distribution must have
the form n1/α . We now prove that claim. First, for a symmetric distribution, we know
the characteristic function has the form e−c|t|α . From the relation (2.2.3), we see than
e−nc|t|α = e−c|cnt|α , and hence n = cα

n . The result for an asymmetric distribution then
follows from relation (2.2.3) and its complex conjugate, together with observation (2.2.8).

Asymmetric stable random variables enjoy a “mirror-image” property that often sim-
plifies numerical computations: if X has the distribution Sα,β (x;σ ,0), then −X has the
distribution Sα,−β (x;σ ,0). This is easy to see from the representation of the characteristic
function. The stable distribution function and density thus satisfy

Sα,β (x) = 1−Sα,−β (−x) (2.2.10)

and

sα,β (x) = sα,−β (−x) (2.2.11)

respectively.
The stable density sα,β (x;σ ,µ) is a very well-behaved function—it is a bounded

continous function that is analytic throughout its support.

Proposition 2.2.1. The density of a stable random variable is a bounded continous func-
tion that is analytic at all points of its support.

Proof. First, to see that the density even exists, recall that by the Fourier inversion theorem,
the density of a random variable can be expressed by

f (x) =
1

2π

∫
e−itx

φ(t)dt

if its characteristic function φ(t) is (L1) integrable [Bre68]. For a stable random variable,
|φ(t)| = exp(−σα |t|α), which is integrable, so the density exists. Boundedness is imme-
diate, since |sα,β (x;σ ,µ) | is bounded by the L1 norm of the integrand. Continuity follows
from the Lebesgue dominated convergence theorem [Fol99]. Integrals of the derivatives
of the integrand with respect to x are easily seen to be bounded by∫

|t|n exp(−σ
α |t|α)dt =

Γ
(n+1

α

)
πασn .

Hence, we may justifiably take derivatives of sα,β (x;σ ,µ) under the integral sign, so all
derivatives of sα,β (x;σ ,µ) exist and are continuous.

To see that the density is actually analytic, and not just C∞, we need to show that
the Taylor series development of sα,β (x;σ ,µ) converges to sα,β (x;σ ,µ) everywhere it is
defined. The coefficient of the n-th term of the Taylor expansion is bounded above by

Γ
(n+1

α

)
n!πασn =

1
πασn

Γ
(n+1

α

)
Γ(n+1)

.
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For α ≥ 1, the n-th root of this term is

1
σ n
√

πα

n

√
Γ
(n+1

α

)
Γ(n+1)

For α = 1, the above quantity converges to 1/σ as n → ∞, so by Hadamard’s formula
[Alh79] the Taylor series has radius of convergence 1/σ > 0 at all x. For α > 1, an
argument using Stirling’s formula shows that the above quantity converges to 0 as n→ ∞,
so the radius of convergence is infinite [GK68].

The above proof of analyticity breaks down for α < 1. An alternative proof is given
in [Zol86].

Unfortunately, the stable density and distribution function do not have closed-form
representations in general. In the next section we will say more about this.

The stable density is also unimodal [IC59] and has all absolute moments of orders
≤ α [DuM71]. Hence when α > 1, the mean of the distribution exists—it just happens to
be µ—but the variance is infinite unless α = 2.

The tails of a stable density (with α 6= 2) are Pareto-like, in the sense that,

lim
x→∞

xα(1−Sα,β (x;σ ,µ)) = Cα

1+β

2
σ

α

lim
x→∞

xα(Sα,β (−x;σ ,µ)) = Cα

1−β

2
σ

α

for some positive constant Cα , the form of which is not important here6[ST94, DuM71].
Finally, we mention a result on the distribution of the sum of a finite number of stable

random variables with the same index.

Proposition 2.2.2. If X1, . . . ,Xn are independent random variables with Xk ∼ Sα,βk
(x;σk,µk),

then for any ak > 0, the weighted sum X = ∑k akXk is distributed as Sα,β (x;σ ,µ), where

β =
∑aα

k σα
k βk

∑aα
k σα

k
, σ

α =
(
∑aα

k σ
α
k
)
, and µ = ∑akµk.

Proof. By independence, the characteristic function of the sum is the product of the char-
acteristic functions.

E exp(i(a1X1 + · · ·+anXn) t) = E exp(iX1(a1t)) · · ·E exp(iXn(ant)) .

From the canonical form of the characteristic function (2.2.6), we see that the right hand
side of the above equation is

exp

(
i(a1µ1 + · · ·+anµn)t−|t|α

n

∑
k=1

aα
k σ

α
k [1− iβk sgn(t)ω(t,α)]

)
.

Grouping terms now proves the proposition.
6Explicitly, the constant Cα is defined by

C−1
α =

∫
∞

0
x−α sinxdx.

A closed-form formula is given in [ST94].
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2.2.4 Closed-Form Formulas for Stable Distributions
As we stated in the last section, the inverse Fourier transform of the characteristic function
of a stable distribution cannot, in general, be expressed in closed-form. There are some
special cases for which simple expressions are available. First, for α = 2, ω(t,2) = 0, so
the characteristic function reduces to

φ(t) = exp(iµt−σ
2t2).

This is the characteristic function of a normal distribution with mean µ and variance 2σ2.
(Take note of the extra factor of 2.) The β parameter here does not come into play; typi-
cally we just use β = 0 for the normal distribution to be consistent (since it’s a symmetric
distribution).

Next, when α = 1 and β = 0 (so that the logarithm term isn’t present), the character-
istic function is

φ(t) = exp(iµt−σ |t|).
The inverse Fourier transform of this function is precisely the Cauchy density (with loca-
tion parameter µ and scale parameter σ .)

There are two additional closed-forms available. When α = 1/2 and β = 1 we obtain
the density of the so-called Lévy distribution:

s1/2,1 (x;σ ,µ) =
√

σ

2π

1
(x−µ)3/2 exp

(
− σ

2(x−µ)

)
.

This distribution (which also happens to be the distribution of 1/Z2 where Z ∼ N(0,1))
pops up in random walk theory. The other closed-form distribution is the “mirror-image”
of this one, i.e., the distribution with α = 1/2 and β =−1.

While other stable densities do not have nice closed-form formulas, some are repre-
sentable in terms of special functions. Zolotarev [Zol86] derives representations of sta-
ble densities with certain rational values of α in terms of special functions (Whittaker
functions) via differential equations. These representations are too complex, however, for
day-to-day work, and too specific to be of general computational use.

2.2.5 Plots of Stable Densities and Distributions
Some plots of stable densities and distribution functions for various values of α and β are
shown in Figures 2.1-2.6.

2.2.6 Other Parameterizations
There are many ways of expressing the (log) characteristic function of a stable distribution,
and this has led to considerable confusion in the literature. (In fact, Hall [Hal81] published
a paper solely on this matter.) It also makes the use of tables and numerical routines for
stable distributions tricky, as one has to transform the desired parameters to the form used
by that particular piece of code.7

7For instance, Holt and Crow [HC73] flip the sign of β for α 6= 1.
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Figure 2.1: Stable PDF’s for α = 1.25 and various values of β .

Figure 2.2: Stable CDF’s for α = 1.25 and various values of β .
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Figure 2.3: Stable PDF’s for α = 1.5 and various values of β .

Figure 2.4: Stable CDF’s for α = 1.50 and various values of β .
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Figure 2.5: Stable PDF’s for α = 1.75 and various values of β .

Figure 2.6: Stable CDF’s for α = 1.75 and various values of β .
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The most common reason to change the parameterization is the discontinuity in the
representation (2.2.6) at α = 1: the ω function is not continuous at α = 1. Zolotarev
[Zol86] noted that this can be fixed by defining a “shifted” location parameter ζ = µ −
β tan(π

2 α). The resulting characteristic function is then

φ(t) = exp(iζ t−σ
α (|t|α + iβ tωM(t,α))) , (2.2.12)

where

ωM(t,α) =

{
(|t|α−1−1) tan(π

2 α), α 6= 1,

− 2
π

log |t|, α = 1.
(2.2.13)

(In Zolotarev’s treatise [Zol86] this is known as the “M” parameterization.) If we use this
parameterization and define the characteristic function for α = 1 by continuity, we can
actually get the stable distributions to convergence in distribution as α → α0, β → β0,
σ → σ0, ζ → ζ0 [ST94].

It is sometimes useful to put the log-characteristic function for α 6= 1 into “polar”
form. Define β2 by the relation

β tan(
π

2
α) = tan

(
π

2
β2K(α)

)
,

where K(α) = 1−|1−α|= min(α,2−α), and σ2 by the relation

σ2 = σ

(
cosβ2

π

2
K(α)

)1/α

.

Then the log of the characteristic function takes the form [ST94]

−σ
α
2 |t|αe−iβ2 sgn(t) π

2 K(α)+itµ . (2.2.14)

(In Zolotarev’s treatise [Zol86] this is known as the “B” parameterization, albeit with a
slightly different definition of K(α).)

There are additional parameterizations out there, but we will not have any use for
them here. The interested reader may consult [Zol86] to learn more.

2.3 A Brief Review of Numerical Techniques for Stable
Distributions

2.3.1 Computation of the Density

There are two main techniques at this time: asymptotic series and numerical evaluation
of the inverse Fourier transform of the characteristic function. The latter can be split into
FFT-based integrators and more direct integrators.
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Asymptotic Methods

Bergström [Ber52, DuM71] derived several infinite series expansions for sα,β (x;1,0).
These expressions are stated in the “polar” parameterization discussed in Section 2.2.6.
If we denote the stable density in the polar parameterization as s∗

α,β ∗(x;1,0), then the sta-
ble density in the canonical parameterization can be expressed as

sα,β (x;1,0) = c∗s∗
α,β ∗(c

∗x;1,0),

where c∗ = [1+β 2(tan
(

π

2 α
)
)2]−1/2α [DuM71].

Bergström’s results state that

s∗
α,β ∗(x;1,0) =

1
π

∞

∑
k=1

Γ(1+ k/α)
k!

(−x)k−1 sin
[

kπ

2α
(α +β

∗min(α,2−α))
]
, (2.3.15)

and

s∗
α,β ∗(x;1,0) =

1
πx1+α

∞

∑
k=1

Γ(1+ kα)
k!

(−x−α)k−1 sin
[

kπ

2
(α +β

∗min(α,2−α))
]
.

(2.3.16)

The first series is absolutely convergent for all x when α ∈ (1,2]; for α ∈ (0,1) it is only
valid asymptotically as x → 0. The second series is absolutely convergent for x > 0 when
α ∈ (0,1) and valid asymptotically as x→ ∞ for α ∈ (1,2) [DuM71].

For the always problematic α = 1 case, neither series converges unless β = 0. In
that case, the first series converges for |x|< 1 while the second converges for |x|> 1. For
α = 2, the first series is just a Taylor series for the density of a normal distribution with
mean 0 and variance 2. The second series vanishes entirely when α = 2, and α ∈ (0,1)
and β ∗ =−1, or α ∈ (1,2) and β ∗ = 1 due to the extremely fast decay of the right (resp.,
left) tails of the distributions with these parameters [DuM71].

Methods based on Numerical Integration

These methods all utilise the representation of the density as the inverse Fourier transform
of the characteristic function:

f (x) =
1

2π

∫
e−ixt

φ(t)dt. (2.3.17)

The integrand is not especially pleasant to deal with, and this has limited the number of
practical implemenations of stable models.

The two majors approaches to numerical integration are the direct approach, in which
the integral (or some fixed-up version of it) is computed using standard quadrature tech-
niques, and the FFT approach, in which the integrand is made to look like the discrete
Fourier transform of some sequence. Typically, these approaches are further combined
with asymptotic methods to provide more accuracy for values deep in the tails of the dis-
tributions.
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Direct Numerical Integration Methods Standard quadrature methods, when used with
the canonical parameterization of the characteristic function (Equation (2.2.6)), have dif-
ficulty with Equation (2.3.17) when α is near 1. Nolan’s approach [Nol97] instead uses
Zolotarev’s “M” parameterization of a standardized stable distribution (see Section 2.2.6).
He applies an adaptive quadrature method to an integral representation for the stable den-
sity due to Zolotarev [Zol86]. To express these formulas in the “M” parameterization, he
introduces the following notation.

ζ =

{
−β tan

(
π

2 α
)
, α 6= 1

0, α = 1
(2.3.18)

θ0 =

{
1
α

arctan(β tan
(

π

2 α
)
), α 6= 1

π

2 , α = 1
(2.3.19)

c1(α,β ) =


1
π

(
π

2 −θ0
)
, α < 1,

0, α = 1,

1, α > 1,

(2.3.20)

V (θ ;α,β ) =

(cosαθ0)
1/α
(

cosθ

sinα(θ0+θ)

) α

α−1 cos(αθ0+(α−1)θ)
cosθ

, α 6= 1
2
π

(
π

2 +βθ

cosθ

)
exp
(

1
β

(
π

2 +βθ
)

tanθ

)
, α = 1,β 6= 0.

(2.3.21)

The integral representations for the density are then defined as follows [Nol97].

sα,β (x;1,0) =


α(x−ζ )

1
α−1

π|α−1|
∫ π

2
θ0

V (θ ;α,β )exp(−(x−ζ )
α

α−1V (θ ;α,β )dθ , x > ζ

Γ(1+ 1
α

)cosθ0

π(1+ζ 2)1/(2α) , x = ζ

sα,−β (−x;1,0) , x < ζ

(2.3.22)

when α 6= 1; and

s1,β (x;1,0) =

 1
2|β |e

− π

2
x
β
∫ π

2
− π

2
V (θ ;1,β )exp

(
−e−

π

2
x
β V (θ ;1,β )

)
, β 6= 0

1
π(1+x2) , β = 0.

(2.3.23)

The integrand starts at 0 when θ = θ0, increases monotonically to a maximum (1/e), then
decreases monotonically back to 0 at θ = π

2 [Buc95, Nol97]. For some combinations
of (α,β ) (e.g., when α is near 1, when β is near 1) the mass of the integrand can be
highly concentrated, and thus, easily missed by the quadrature routine. To remedy this,
Nolan finds the location θ2 of the maximum (via a standard root-finding algorithm), then
computes the integrals in two pieces. This approach also works for the α = 1 case.

Fast Fourier Transform Methods When the discretization of the integral is done a cer-
tain way, it can be computed faster using the Fast Fourier Transform (FFT) than using
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standard quadrature methods [Che91, DM98, MDC99, RM00]. For simplicity, let us as-
sume the characteristic function is in the canonical form (given in Equation (2.2.6)). After
standardization (subtracting µ and dividing by σ ), the stable density can be expressed as

sα,β (x;1,0) =
∫

e−2πixω
φ(2πω;α,β ,1,0)dω, (2.3.24)

where the standardized characteristic function is

φ(t;α,β ,1,0) = exp
(
−|t|α + iβ t|t|α−1 tan(

π

2
α)
)

. (2.3.25)

We will evaluate the integral in Equation (2.3.24) using N equally-spaced x points, cen-
tered at 0, with mesh size h:

xk =
(

k−1− N
2

)
h, k = 1, . . . ,N. (2.3.26)

The density can be computed for other values inside the grid via interpolation. For values
outside the grid we can use Bergström’s asymptotic method.

The resulting integrals can be discretized using the “right-hand” rule for N equally-
spaced points

ωn =
(

n−1− N
2

)
s (2.3.27)

with mesh size s.

sα,β (xk;1,0)≈ s
N

∑
n=1

e−2πixkωnφ(2πωn;α,β ,1,0). (2.3.28)

For the choice s = (hN)−1, some algebra reduces the approximating sum to

sα,β (xk;1,0)≈ s(−1)k−1−N
2

N

∑
n=1

(−1)n−1e−
2πi(n−1)(k−1)

N φ(2πωn;α,β ,1,0). (2.3.29)

The sum is precisely the discrete Fourier transform of the sequence

(−1)n−1
φ(2πωn), n = 1, . . . ,N, (2.3.30)

so it can be computed in Ω(N logN) time using the FFT. After multiplying each of the
resulting values by the quantity s(−1)k−1−N

2 , we obtain the values of the (standardized)
stable PDF at each xk.

The above procedure will obviously have trouble near the discontinuity at α = 1.
In theory, switching to the “M” parameterization will fix this, since it removes the dis-
continuity in the characteristic function. Numerically, however, this is not the case: the
characteristic function contains a term of the form (|t|α−1) tan

(
π

2 α
)
, which is ill-behaved

near α = 1. A Taylor series about α = 1 can be used to remedy the problem; such a series
is tedious to calculate, though, and (in what limited experiments we have perfomed) seems
to require too many terms of be of practical value. We are presently working on a better
solution to this problem. (We also limited many of our later experiments to α ≥ 1.25 for
this reason.)
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Implementation

We have implemented Nolan’s method in the S-PLUS™ function dstable.int. The
FFT method, along with Bergström’s approximations for the tails, is implemented in the S-
PLUS™ function dstable.fft. Both methods have been verified against the tabulation
of Holt and Crow [HC73].

2.3.2 Computation of the Distribution Function
Computation of the stable distribution function follows roughly the same paths as com-
putation of the density function. One can integrate Berström’s asymptotic series for the
density termwise. One can also use the computed density values to approximate the dis-
tribution via quadrature.

Nolan [Nol97] applies quadrature methods to Zolotarev’s integral representations for
the distribution functions (expressed in the “M” parameterization).

Sα,β (x;1,0) =


c1(α,β )+ sgn(1−α)

π

∫ π

2
θ0

exp(−(x−ζ )
α

α−1V (θ ;α,β )dθ , x > ζ

1
π

(
π

2 −θ0
)
, x = ζ

1−Sα,−β (−x;1,0) , x < ζ

(2.3.31)

when α 6= 1; and

S1,β (x;1,0) =


1
π

∫ π

2
− π

2
exp
(
−e−

π

2
x
β V (θ ;1,β )

)
, β > 0

1
2 + 1

π
arctanx, β = 0

1−S1,−β (−x;1,0) , β < 0

(2.3.32)

In this case the integrands are well-behaved functions, so it is not necessary to split the
domain of integration.

Implementation

We have implemented Nolan’s method in the S-PLUS™ function pstable.int. An-
other S-PLUS™ function, pstable.fft, uses the density values computed by dstable.fft
along with quadrature to approximate the CDF.

2.3.3 Computation of Stable Quantiles
Quantiles for stable distributions are usually computed via one of two ways: inverse inter-
polation of the distribution function Sα,β (x;σ ,µ) or solution of the equation Sα,β (x;σ ,µ)=
p using Newton’s method (or other similar techniques). For the special cases of the
Gaussian, the Cauchy, and the Lévy distributions, there are more straightforward algo-
rithms.

When the distribution function is computed using the FFT, values of the CDF are
computed over a regularly spaced grid (on the characteristic function side), so inverse
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interpolation is the easiest method to use. When a direct integration method is used to
compute the density and distribution functions, it is usually more straightforward to find
quantiles use Newton’s method. Initial values can be found using the FFT method on a
coarse grid.

Implementation

We have implemented both methods in S-PLUS™ as the functions qstable.fft and
qstable.int, respectively.

For values of p < 0.5, the computation is often more difficult to do directly when
the distribution is skewed to the right, so we use the following relation. Suppose X ∼
Sα,β (x;1,0); then using property 2.2.10 we have

p = P(X ≤ xp)

1− p = 1−P(X ≤ xp) =
∫

∞

xp

sα,β (x;1,0) dx

=
∫ −xp

−∞

sα,β (−y;1,0) dy =
∫ −xp

−∞

sα,−β (y;1,0) dy

p = 1−Sα,−β (−xp;1,0) .

2.3.4 Generation of Stable Random Numbers
The problem of generating random numbers from a stable distribution was first approached
using the probability integral tranformation—independent random numbers were gener-
ated from a uniform distribution, then transformed using an approximation to the distri-
bution function Sα,β (x;σ ,µ) [FR68, DuM71, PHL75]. The amount of effort needed to
compute even an approximation to the distribution function for a stable random variable
made this approach impractical for small samples.

Chambers, Mallows, and Stuck [CMS76] derived a faster algorithm for random num-
bers by deducing a representation of a stable random variable as a (complicated) function
of a uniform random variable and an exponential variable. Using an integral represen-
tation for the distribution function Sα,β (x;1,0) derived by Zolotarev [Zol66], it can be
shown that

Sα,β (x;1,0) =
sinα(Φ−Φ0)

(cosΦ)1/α

(
cos(Φ−α(Φ−Φ0))

W

)(1−α)/(α)

, α 6= 1,

S1,β (x;1,0) =
2
π

(
1
2

π +βΦ tan(Φ)−β ln
(

π

2W cosΦ

π

2 +βΦ

))
,

where W is an Exponential(1) variable, Φ is Uniform on (−π

2 , π

2 ), and the constant Φ0

equals −π

2 β
1−|1−α|

α
. This representation suffers from the usual discontinuity at α = 1

and an additional discontinuity at β = 1, so instead they use a modified distribution,
S′

α,β (x;1,0), defined as

S′
α,β (x;1,0) = tanαΦ0 +(cosαΦ0)−1/αSα,β (x;1,0) ,
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and a modified skewness β ′, defined as

β
′(α,β ) =− tan(

π

2
(1−α)) tan(αΦ0), α 6= 1

β
′(1,β ) = β .

The modified distribution is continuous near α = 1 and has the correct limiting behavior
as β → 1. To compute the distribution accurately, they define ε = 1−α and

z =
cosεΦ− tanαΦ0 sinεΦ

W cosΦ
,

then express S′
α,β (x;1,0) as

S′
α,β ′ (x;1,0) =

(
sinαΦ

cosΦ
− tanαΦ

(
cosαΦ

cosΦ
−1
))

zε/(1−ε) + tanαΦ0

(
1− zε/(1−ε)

)
.

Implementation

In their paper Chambers, Mallows, and Stuck provide a FORTRAN implementation of their
method, an updated version of which is included in S-PLUS™ as the function rstab.
Since rstab expects a transformed skewness parameter β ′ as input, we have written a
wrapper function, rstable, that permits the use of the standard β . Our wrapper function
also supports σ 6= 1 and µ 6= 0 (by rescaling and translation of the output of rstab).

2.4 Estimation of Stable Parameters
The usefulness of stable distributions would be quite limited if there were not means of
estimating the parameters of a stable distribution from a sample. Numerous estimators
have been proposed for use with stable distributions, but to date no single estimator has
been widely accepted. This is largely due to the same factors that make numerical compu-
tation with stable distributions difficult—the lack of closed forms, the confusing plurarity
of parameterizations, etc.

In this section we will examine some of the more popular methods for estimating the
parameters of a stable distribution. We will also examine a new estimator derived from
using quantile-quantile plots to choose the best parameters.

2.4.1 Estimation via Maximum Likelihood

The first estimation method that springs to the mind of the statistician is maximum like-
lihood estimation. Since the density of a stable distribution is generally not available in
closed form, we immediately hit a snag. In the last chapter, though, we discussed some
numerical methods for computing the density of a stable distribution fairly accurately, so
we are not entirely sunk.
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We can use the representation of the density of a stable distribution as the inverse
Fourier transform of its characteristic function to build a likelihood function: given a sam-
ple X1, . . . ,Xn presumed to be from a stable distribution sα,β (x;σ ,µ), the likelihood of the
model can be expressed as

L(θ |X1, . . .Xn) =
n

∏
k=1

f (xk) =
n

∏
k=1

∫
e−ixkt

φ(t;α,β ,σ ,µ)dt,

where θ = (α,β ,σ ,µ). The log-likelihood is then given by

logL(θ |X1, . . .Xn) =
n

∑
k=1

log
∫

e−ixkt
φ(t;α,β ,σ ,µ)dt.

In theory, we can solve the equation

logL(θ̂ |X1, . . . ,Xn) = 0

for θ̂ , the MLE of the parameters θ = (α,β ,σ ,µ). In practice, however, the optimization
is complicated by fact that exact derivatives are just as difficult to obtain numerically as
the densities. Derivatives can be approximated using finite differences, but this is just as
expensive.

In his dissertation (and subsequent papers) DuMouchel demonstrated that the MLE is
a consistent estimator with an asymptotic normal distribution [DuM71, DuM73a, DuM73b,
DuM75].

2.4.2 Quantile-Based Methods
The quantile-based methods for estimating the parameters of a stable distribution have the
advantages of being fast and easy-to-use, but are often ill-suited for financial work, as they
ignore data values deep in the tails of the empirical distribution of the sample [RM00].

The method of McCulloch

McCulloch [McC86] proposed a modification to the method of Fama and Roll [FR71]. The
parameters of the stable distribution Sα,β (x;σ ,µ) are estimated using five predetermined
sample quantiles. Unlike Fama and Roll’s method, it works for α ∈ [0.6,2.0] and β ∈
[−1,1], and all its estimators are consistent.

The method assumes the standard parameterization for a stable distribution (see Equa-
tion (2.2.6)). McCulloch defines the population quantities

υα =
x.95− x.05

x.75− x.25
,υβ =

x.95 + x.05−2x.5

x.95− x.05
,υσ =

x.75 + x.25

σ
,υζ =

ζ − x.5

σ
,

where xq is the q-th quantile of a stable distribution, and ζ is the shifted location parameter:

ζ =

{
µ +βσ tan(π

2 α), α 6= 1
µ, α = 1.
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The first two quantities υα and υβ are independent of the location and scale parameters,
so they can be tabulated as functions φ1(α,β ) and φ2(α,β ) of α and β . The sample
versions of υα and υβ are then computed by substituting sample quantiles (corrected for
continuity) for population quantiles. The sample versions are consistent estimators of the
population versions (since the sample quantiles are consistent estimators of the population
quantiles and υα and υβ are continuous functions of the quantiles). Inversion of the φ1
and φ2 functions (numerically) yields consistent estimators of α and β .

The estimator of σ is obtained in similar fashion using υσ . µ , however, cannot be
directly estimated using an analogous quantity due to a singularity in the resulting φ func-
tion. (The singularity arises from the discontinuity in the canonical parameterization at
α = 1.) Zolotarev’s shifted location parameter ζ , however, does not suffer from this prob-
lem, so McCulloch estimates it by inverting υζ , then unshifting.

2.4.3 Methods based on Fitting the Characteristic Function
Koutrouvelis [Kou80, Kou81] proposed fitting the characteristic function to the observa-
tions as a means of estimating the parameters of a stable distribution. Here the character-
istic function is expressed in its canonical form (Equation (2.2.6)). Koutrouvelis considers
the logarithm ψ(t) of the characteristic function

ψ(t) = logφ(t) =−|σt|α + i(µt + |σt|αβw(t,α,σ)) .

The logarithm of the (negative of the) real part of this expression yields a linear relation in
which the unknown index α is the slope, and σ is a shift:

log(−ℜ(ψ(t))) = α(log |t|+ logσ).

Likewise, the imaginary part of the expression yields a nonlinear relationship with β and
µ as coefficients:

ℑ(ψ(t)) = µt + |σt|αβ sgn(t) tan(
π

2
α).

Here α and σ are assumed to have been determined from Equation (2.4.3).
The location and scale parameters µ and σ have the largest effect on the estimation

[PHL75], so Koutrouvelis estimates them first using the method of Fama and Roll [FR71],
then standardizes the observations using these initial estimates. Next, he forms the sample
characteristic function

ˆφ(tk) =
1
N

N

∑
n=1

exp(itkxn)

at predetermined points tk, k = 1, . . . ,K using the standardized observations xn. The linear
relation specified in Equation (2.4.3) is then fit using generalized least squares (GLS) to
determine the estimate α̂ of the index α and an updated estimate σ̂1 of the scale.

To find β and µ , Koutrouvelis plugs the estimates of α and σ into Equation (2.4.3).
The sample characteristic function is once again computed at predetermined points tl ,
l = 1, . . .L, which has the nice side-effect of linearizing Equation (2.4.3). The estimate β̂

of the symmetry parameter β and the updated estimate µ̂1 of the location parameter µ can
then be found by GLS.
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Finally, the scale and location estimates σ̂1 and µ̂1 are rescaled to match the scale and
location of the original observations (since σ̂1 ≈ 1 and µ̂1 ≈ 0).

Koutrouvelis’s method performs well [KW98], but at a high computational cost. Ko-
gon and Williams [KW98] proposed a modified version of Koutrouvelis’s method. In their
version, the characteristic function is parameterized using Zolotarev’s shifted location pa-
rameter ζ , which eliminates the always-problematic discontinuity at α = 1. This again
gives regression equations similar to those obtained by Koutrouvelis. This time the initial
values for σ and ζ are obtained using (the more accurate) McCulloch’s method [McC86].
The regression can then be done using ordinary least squares, which reduces the complex-
ity of the algorithm.

In simulation studies Kogon and Williams found that their estimator performed at
least as well as Koutrouvelis’s estimator for estimation of the stable index, with the per-
formance being much better near α = 1. The skewness parameter β was better estimated
by the Koutrouvelis estimator, but this can be remedied by using GLS to perfom the re-
gressions in the Kogon-Williams estimator instead of OLS [KW98].

2.4.4 An Estimator of the Stable Parameters Based on Q-Q Plots
Introduction

In this section we discuss a novel method for estimating the parameters of a stable distri-
bution. The method optimizes the correlation between quantiles of the data and those of
the target distribution. We also present some asymptotic results for the estimator.

Theoretical Background

Let X1, . . . ,Xn denote the observed data, and let Xn:1, . . . ,Xn:n denote their order statistics.
Suppose we wanted to create a quantile-quantile plot of the observed data against

some hypothesized distribution F(y;θ). We would generate the 0.5/n, . . . ,(n− 0.5)/n
quantiles of the theoretical distribution, and plot the points (Xn:i,Yn:i), where Yn:i = F−1( i−0.5

n ;θ).
The theoretical distribution would be declared a good fit if the points lie approximately on
a 45 degree line. Stated mathematically, the distribution is a good fit if the correlation
between the X’s and the Y ’s is approximately 1.

We exploit this idea to find the parameters of stable distribution. The (squared) sample
correlation coefficient is

r2 =
(∑(xi− x̄)(yi− ȳ))2

∑(xi− x̄)2 ∑(yi− ȳ)2 ,

which we can rewrite using the order statistics as

r2 =
(∑(xn:i− x̄)(yn:i− ȳ))2

∑(xn:i− x̄)2 ∑(yn:i− ȳ)2 .

Replacing y’s with F’s

r2(θ) =

(
∑(xn:i− x̄)(F−1( i−0.5

n ;θ)−∑ j F−1( j−0.5
n ;θ))

)2

∑(xn:i− x̄)2 ∑(F−1( i−0.5
n ;θ)−∑ j F−1( j−0.5

n ;θ))2
.
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where we use the notation r2(θ) to emphasize the dependence of the sample correlation
coefficient on the parameters θ of the theoretical distribution. This quantity is then maxi-
mized over θ = (α,β ,σ ,µ).

In our experiments we found that the Q-Q estimator as described above was incredibly
slow (since derivatives were not easily available) and suffered from convergence problems.
Specifically, tracing the intermediate values produced by the optimizer showed that the
algorithm had difficulty balancing α and σ . We found via trial and error that the following
algorithm had much better performance.

1. Obtain initial estimates (α0,β0,σ0,µ0) of (α,β ,σ ,µ) via McCulloch’s quantile es-
timator.

2. Normalize the observations using σ0 and µ0.

3. Fit α and β using the Q-Q method with σ and µ fixed at 1 and 0, respectively.

4. Report these values of α and β , along with σ0 and µ0, as the estimate.

This algorithm converges much faster than the previous method (but it is still slower than
the other estimators on average). We considered an extension to this algorithm, in which
the estimates of σ and µ are improved (perhaps by using the values of α and β computed
in Step 4 above, along with σ0 and µ0, as initial values to the previous method), but, given
the already slow convergence of the Q-Q estimator, the resulting estimator would be far
too slow to be of any practical use.

2.4.5 Empirical Influence Functions
The empirical influence function (EIF) of an estimator θ̂n of θ at the sample x is defined
as

EIF(x; θ̂ ,x) = (n+1)
(
θ̂n(x,x)− θ̂n(x)

)
. (2.4.33)

The empirical influence function is a finite-sample version of the (asymptotic) influence
function [SM05, HRRS86]. It measures how much an estimator changes in the presence
of a single contamination point (the x). For example, suppose θ̂n is the sample mean, x̄.
Then a simple calculation shows that

EIF(x; x̄,x) = (n+1)

(
1

n+1

n+1

∑
i=1

xi−
1
n

n

∑
i=1

xi

)
= x− θ̂n(x).

Since this function is unbounded in x, we see that a contamination point can have arbitrar-
ily large influence on the quantity being estimated by x̄. That is, a single outlier can pull
the estimate very far away from the true value.

The EIF’s for the estimators of the parameters of a stable distribution are not simple
enough to work out by hand, but we can still compute them numerically. In Figures 2.9-
2.21 we show some EIF’s for the above estimators (McCulloch’s quantile estimator, the
Kogon-Williams estimator, the MLE, and the Q-Q estimator). In order to show the amount
of influence directly, we have removed the normalization factor of n + 1. In all the plots
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α β P(X ≤−100) P(X > 100) α β P(X ≤−100) P(X > 100)

1.25 −1.0 0.001353 0.000227 1.25 −0.5 0.001078 0.000515
1.50 −1.0 0.000341 0.000043 1.50 −0.5 0.000267 0.000118
1.75 −1.0 0.000063 0.000006 1.75 −0.5 0.000049 0.00002
2.00 −1.0 0 0 2.00 −0.5 0 0

1.25 0.0 0.000799 0.000799 1.25 0.5 0.000515 0.001078
1.50 0.0 0.000192 0.000192 1.50 0.5 0.000118 0.000267
1.75 0.0 0.000035 0.000035 1.75 0.5 0.00002 0.000049
2.00 0.0 0 0 2.00 0.5 0 0

1.25 1.0 0.000227 0.001353
1.50 1.0 0.000043 0.000341
1.75 1.0 0.000006 0.000063
2.00 1.0 0 0

Table 2.1: Tail probabilities of stable distributions with various α and β .

we used a sample size of n = 100, the n quantiles q.005, . . . ,q.995 as the sample x, and 100
contamination points spaced evenly in the interval [−100,100]. The interval was chosen so
that the resulting tail probabilities were smaller than ≈ 0.001. (A table of tail probabilities
is shown in Table 2.1.) The true values of α used were 1.25,1.50,1.75, and 2.00 (arranged
from top to bottom), while the true values of β used were −1,−.5,0, .5, and 1 (arranged
from left to right). The scale and location parameters were fixed at 1 and 0, respectively.
In some of the EIF computations, the numerical accuracy of the underlying density, etc.
routines has a noticeable effect on the results. (How noticeable the effect is depends on
the range over which the plot is made.) The two most frequently occurring situations are
(a) when α is near 1 and the distribution is maximally skewed (|β | ≈ 1) and when (b)
α = 2. In the former situation, the approximation to the density is not accurate enough
in the “short” tail of the density (e.g., for β = 1, the distribution is right-skewed, so the
approximation is lacking near the left tail). This is illustrated in Figure 2.7, in which we
have plotted contours of the log-likelihood at the sample (left plot) and at the contaminated
sample (right plot). Clearly, the true parameters do not maximize the log-likelihood as they
should. This effect is only drastic when the contamination point is close to the boundary of
the region in which the approximation holds; if the contamination point occurs further out
in the tail, the magnitude of the effect is much smaller, and can only be seen on a suitably
local scale.

In the second scenario, the difficulty is that the skewness parameter β is meaningless.
There is no real way to estimate it, and hence, the estimator can be “completely wrong”.
The log-likelihood surface is shown in Figure 2.8; the left plot is the log-likelihood at
the sample, and the right plot is the log-likelihood at the contaminated sample. The
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log-likelihood of the sample is relatively constant along the plane α = 2, while the log-
likelihood of the contaminated sample is flat near the boundary of the parameter space,
dropping off sharply near the edge. Thus the computed value of θ̂ at the (uncontaminated)
sample can be wrong, which leads to EIF’s that appear to span an incorrect range (e.g.,
[−1,1] instead of [0,2]).

Discussion of the EIF plots

The first pair of plots (Figs. 2.9 and 2.10) depicts the EIF’s for McCulloch’s quantile
estimator. The spike near 0 is an numerical artefact—the EIF is actually a step function.

The second pair of plots (Figs. 2.11 and 2.12) depicts the EIF’s for the regression-
based estimator of Kogon and Williams. The EIF’s show periodic behavior, which we
believe is due to the separation of the real and imaginary parts in the regression.

The third pair of plots (Figs. 2.13 and 2.14) depicts the EIF’s for the maximum like-
lihood estimator. The jaggedness of the EIF for α when α = 1.25 is due to the numerical
problem we discussed earlier. The abnormal range for the EIF of β when α = 2 is due to
the previously mentioned difficulty with estimating β when α is near 2.

The next plot (Figure 2.15) depicts the EIF for the maximum likelihood estimator
when only α is unknown. In this computation, we assumed β = 0, σ = 1, and µ = 0.

The next pair of plots (Figs. 2.16 and 2.17) shows the EIF’s for the maximum likeli-
hood estimator when only α and β are unknown. In this computation we assumed σ = 1
and µ = 0.

The next pair of plots (Figs. 2.18 and 2.19) shows the EIF’s for the maximum likeli-
hood estimator when only µ is known (assumed to be 0).

The last pair of plots (Figs. 2.20 and 2.21) depicts the EIF’s for the (modified) Q-Q
estimator. The convergence problems associated with the estimator are responsible for the
odd appearance of the EIF’s.

To summarize,

• In general, outliers bias the estimates of α towards α = 1 (i.e., a heavier-tailed
distribution;

• with respect to maximum likelihood estimation, a priori knowledge of some of the
parameters does not have a significant effect on how the MLE behaves in the pres-
ence of outliers;

• β becomes more difficult to estimate as α nears 2 (which is to be expected, since β

matters less; and

• the Q-Q estimator, even in its modified form, is still too unstable to be useful.
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Figure 2.7: Contour plots of the likelihood at the sample (left) and at the contaminated
sample (right). The “X” indicates the location of the true parameters α = 1.25 and β = 1.
The contamination point is−5.8, which is just outside the 0.005 quantile of the distribution
with those parameters.
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Figure 2.8: 3-D plot of the log-likelihood at the sample (left) and at the contaminated
sample (right). The “X” indicates the location of the true maximum. The contamination
point here is −10.



32 CHAPTER 2. UNIVARIATE STABLE DISTRIBUTIONS

be
ta

: -
1

al
ph

a:
 1

.2
5

-1
00

0
50

be
ta

: -
0.

5
al

ph
a:

 1
.2

5
be

ta
: 0

al
ph

a:
 1

.2
5

-1
00

0
50

be
ta

: 0
.5

al
ph

a:
 1

.2
5

-0
.1

0
-0

.0
5

0.
0

0.
05

be
ta

: 1
al

ph
a:

 1
.2

5

-0
.1

0
-0

.0
5

0.
0

0.
05

be
ta

: -
1

al
ph

a:
 1

.5
be

ta
: -

0.
5

al
ph

a:
 1

.5
be

ta
: 0

al
ph

a:
 1

.5
be

ta
: 0

.5
al

ph
a:

 1
.5

be
ta

: 1
al

ph
a:

 1
.5

be
ta

: -
1

al
ph

a:
 1

.7
5

be
ta

: -
0.

5
al

ph
a:

 1
.7

5
be

ta
: 0

al
ph

a:
 1

.7
5

be
ta

: 0
.5

al
ph

a:
 1

.7
5

-0
.1

0
-0

.0
5

0.
0

0.
05

be
ta

: 1
al

ph
a:

 1
.7

5

-0
.1

0
-0

.0
5

0.
0

0.
05

-1
00

0
50

be
ta

: -
1

al
ph

a:
 2

be
ta

: -
0.

5
al

ph
a:

 2

-1
00

0
50

be
ta

: 0
al

ph
a:

 2
be

ta
: 0

.5
al

ph
a:

 2

-1
00

0
50

be
ta

: 1
al

ph
a:

 2

co
nt

am
in

at
io

n

eif.alpha

E
m

pi
ric

al
 In

flu
en

ce
 F

un
ct

io
n 

fo
r M

cC
ul

lo
ch

 Q
ua

nt
ile

 E
st

im
at

or
 o

f a
lp

ha

nu
m

be
r o

f q
ua

nt
ile

s 
= 

10
0 

nu
m

be
r o

f c
on

ta
m

in
at

io
n 

po
in

ts
 =

 1
00

Figure 2.9: Empirical influence functions for McCulloch’s quantile estimator of α .
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Figure 2.10: Empirical influence functions for McCulloch’s quantile estimator of β .
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Figure 2.11: Empirical influence functions for the Kogon-Williams estimator of α .
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Figure 2.12: Empirical influence functions for the Kogon-Williams estimator of β .
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Figure 2.13: Empirical influence functions for the maximum likelihood estimator of α .
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Figure 2.14: Empirical influence functions for the maximum likelihood estimator of β .
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Figure 2.15: Empirical influence functions for the maximum likelihood estimator of α

when only α is unknown.
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Figure 2.16: Empirical influence functions for the maximum likelihood estimator of α

when only α and β are unknown.
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Figure 2.17: Empirical influence functions for the maximum likelihood estimator of β

when only α and β are unknown.
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Figure 2.18: Empirical influence functions for the maximum likelihood estimator of α

when only µ is known.
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Figure 2.19: Empirical influence functions for the maximum likelihood estimator of β

when only µ is known.
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Figure 2.20: Empirical influence functions for the Q-Q plot estimator of α .
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Figure 2.21: Empirical influence functions for the Q-Q plot estimator of β .
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2.5 Score and Fisher Information Matrix for Stable Laws
Suppose the random variable X has a Sα,β (x;σ ,µ) distribution. As we have seen, its
density can be expressed as the inverse Fourier transform of its characteristic function:

sα,β (x;σ ,µ) =
∫

e−ixt
φ(t;α,β ,σ ,µ)dt,

where
φ(t;α,β ,σ ,µ) = exp(−σ

α |t|α (1+ iβ sgn(t)ω(t;α))+ iµt) .

For n iid samples X1, . . . ,Xn of this sort, the log-likelihood of the stable model is given by

logL(α,β ,σ ,µ|x1, ...,xn) =
n

∑
k=1

logsα,β (xk;σ ,µ)

It is not immediately obvious that the stable density can be differentiated with respect
to its parameters. Rachev and Mittnik [RM00] state that the characteristic function of a
stable density, in the shifted or “M” parameterization, is twice-differentiable with respect
to its parameters. Recall that in this parameterization, the logarithm of this characteristic
function is given by

logφ(t) =

{
itζ − c|t|α + ict(|t|α−1−1)β tan

(
π

2 α
)
, α 6= 1

itζ − c|t|− icβ
2
π

log |t|, α = 1,

where ζ is the shifted location parameter, and c = σα is an alternative parameterization of
the scale.

The process of computing the derivatives is greatly simplified by the observations that

∂

∂θ1
φ(t) =

∂

∂θ1
exp(logφ(t)) =

(
∂

∂θ1
logφ(t)

)
φ(t)

and

∂ 2

∂θ1∂θ2
=
[

∂ 2

∂θ1∂θ2
logφ(t)+

(
∂

∂θ1
logφ(t)

)(
∂

∂θ2
logφ(t)

)]
φ ,

where θ1,θ2 ∈ {α,β ,σ ,µ}.
The derivatives of logφ(t) are shown below.

∂ logφ(t)
∂α

=

{
−c(log |t|)|t|α + ictβ

[
(log |t|)|t|α−1 tan

(
π

2 α
)
+(|t|α−1−1)π

2 sec2 π

2 α
]
, α 6= 1

−c(log |t|)|t|+ ictβ
[
− 2

π
(log |t|)2 +− 2

π
(log |t|)

]
, α = 1

∂ logφ(t)
∂β

=

{
ict(|t|α−1−1) tan

(
π

2 α
)
, α 6= 1

−ict 2
π

log |t|, α = 1

∂ logφ(t)
∂c

=

{
−|t|α + it(|t|α−1−1)β tan

(
π

2 α
)
, α 6= 1

−|t|− iβ 2
π

log |t|, α = 1,

∂ logφ(t)
∂ζ

= it
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The α = 1 cases are computed using the limiting forms of the derivatives for α 6= 1 and
the computations

lim
α→1

(|t|α−1−1) tan
(

π

2
α

)
=− 2

π
log(|t|)

lim
α→1

(log |t|)|t|α−1 tan
(

π

2
α

)
+(|t|α−1−1)

π

2
sec2 π

2
α =− 1

π
(log(|t|))2.

For what it’s worth, we have the identities

∂ sα,β (x;c,ζ )
∂x

=−
∂ sα,β (x;c,ζ )

∂ζ

∂ logφ(t)
∂c

=−|t|α +
β

c
∂ logφ(t)

∂β
.

Second derivatives for the α 6= 1 case can now be computed without much additional
difficulty.

∂ 2logφ(t)
∂α2 =−c(log |t|)2|t|α

+ ictβ
{

(log |t|)
[
(log |t|)|t|α−1 tan

(
π

2
α

)
+ |t|α−1 π

2
sec2(

π

2
α)
]

+
[
(log |t|)|t|α−1 π

2
sec2(

π

2
α)+

π2

2
(|t|α−1−1) tan

(
π

2
α

)
sec2(

π

2
α)
]}

∂ 2logφ(t)
∂α∂β

= ict
[
(log |t|)|t|α−1 tan

(
π

2
α

)
+(|t|α−1−1)

π

2
sec2(

π

2
)α
]

∂ 2logφ(t)
∂α∂c

=−(log |t|)|t|α

+ itβ
[
(log |t|)|t|α−1 tan

(
π

2
α

)
+(|t|α−1−1)

π

2
sec2(

π

2
)α
]

∂ 2logφ(t)
∂β∂c

= it(|t|α−1−1) tan
(

π

2
α

)
∂ 2logφ(t)

∂α∂ζ
=

∂ 2logφ(t)
∂β 2 =

∂ 2logφ(t)
∂β∂ζ

=
∂ 2logφ(t)

∂c2 =
∂ 2logφ(t)

∂c∂ζ
=

∂ 2logφ(t)
∂ζ 2 = 0

The second derivatives for the α = 1 case can again be found by taking limits.
The derivatives of the density can be found by differentiating under the integral sign

and using the above formulas. To find the score equations we can use the relation

∂ log f
∂θ

=
∂ f
∂θ

f

while for the information matrix we need the relation

∂ 2log f
∂θ1∂θ2

=
∂ 2 f

∂θ1∂θ2

f
−

∂ f
∂θ1

∂ f
∂θ2

f 2 .
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Using the first equation, the score equations can be written as

∂

∂θ1

n

∑
k=1

logsα,β (xk;σ ,µ) =
n

∑
k=1

∫
e−ixktφ(t) ∂

∂θ1
logφ(t)dt∫

e−ixktφ(t)dt
,

where as before θ1 is one of {α,β ,σ ,µ}. Likewise, the terms of the information matrix
(for n = 1) can be expressed as

−E
[

∂ 2

∂θ1∂θ2
logsα,β (x;σ ,µ)

]
=−

∫ ∫
e−ixt

φ(t)
∂ 2

∂θ1∂θ2
logφ(t)dt dx

+
∫ (∫ e−ixtφ(t) ∂

∂θ1
logφ(t)dt

)(∫
e−ixtφ(t) ∂

∂θ2
logφ(t)dt

)
(
∫

e−ixtφ(t)dt)
dx.

In particular, even though many of the second derivatives of logφ(t), it is not obvious if
the corresponding terms of the information matrix vanish (which would simply matters
greatly, perhaps allowing us to compute terms of the inverse matrix directly).

The direct numerical computation of the information matrix is not at all straightforward—
many integrals must be approximated. The observed information matrix can be obtained
numerically through finite-difference approximations, and is typically provided as a part
of the output of an optimizer (e.g., optim in the MASS package). This method, however,
is also very computationally-intensive. In order to reduce the computational time to a rea-
sonable amount, we limited our calculations to a single value of σ (σ = 1), five values of
β (β ∈ {±1,±0.5,0}), and nine values of α (α ∈ {1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2.0}).
We computed the empirical correlation between α and σ by inverting the numerical Hessian
obtained from a ML fit of the stable law parameters to a random sample of size 1000 from
the hypothesized true distribution. To deal with the fact that the answers will vary from
experiment to experiment due to various numerical factors (round-off error, etc.), we per-
formed 500 replications for each set of parameters. The .025, .5, and .975 quantiles8 of
the values obtained are plotted in Figure 2.22 as a function of α for each value of β .

8For α near 1.0 the empirical correlation sometimes falls outside of [−1,1]. These values were discarded
in our estimation of the correlation.
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Chapter 3

Univariate t Distributions

3.1 Introduction

Student’s t distribution is well-known in classical statistics. It arises as the distribution of
the ratio of the average of n independent observations drawn from a normal distribution,
minus their true mean, to their standard deviation (scaled by

√
n). That is, the statistic

x̄−µ

(s/
√

n)
(3.1.1)

has a t distribution. The t distribution has a shape parameter (denoted ν) that is known as
the degrees of freedom of the distribution. The distribution of the ratio above is said to
have n− 1 degrees of freedom. By standard probabilistic methods, we can show that the
density function of the t distribution is

f (x|ν) =
1√
νπ

Γ
(

ν+1
2

)
Γ
(

ν

2

) 1(
1+ x2

ν

)(ν+1)/2
. (3.1.2)

We can then define the t distribution for nonintegral ν by this formula. We will henceforth
adopt the notation Tν to denote a t distribution with ν degrees of freedom.

The t distribution was first described in 1908 by William S. Gossett, an employee of
the Guinness Brewery. Company restrictions prohibited him from publishing his results
under his real name, so he published his work under the pseudonym “Student” [Stu08].
Thus, his distribution came to be known as “Student’s t”.

The Cauchy distribution corresponds to the t distribution with 1 degree of freedom.
The standard normal distribution is the limiting distribution as ν → ∞.

The usual derivation of the distribution of the ratio (3.1.1) uses the facts that (1)
the numerator is a N(0,σ2) random variable; (2) the denominator is the square root of
a χ2

n/n random variable; and (3) the numerator and denominator are independent ran-
dom variables. Since the χ2

n distribution is a special case of the Gamma distribution (a
Gamma(n/2,n/2) distribution, to be exact), this derivation also shows that the t distribu-
tion is an inverse-Gamma variance mixture of normal distributions.

49
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The mean of the t distribution is 0 (when ν > 1) while the variance is ν

ν−2 (when
ν > 2). If ν ≤ 1 the mean does not exist, and if ν ≤ 2 the variance of the t distribution
does not exist.

3.2 Score Function and Information Matrix for t Law
Suppose the random variable X is a shifted, rescaled version of a standard Student’s t
random variable T with ν degrees of freedom, i.e.,

X −µ

σ
≡ T ∼Tν .

The density of T was derived in Equation (3.1.2). The density of X is therefore

f (x|ν ,µ,σ) =
1
σ

Γ
(

ν+1
2

)
Γ
(

ν

2

) 1√
νπ

1(
1+ (x−µ)2

σ2ν

) ν+1
2

.

For n iid samples X1, . . . ,Xn of this sort, the loglikelihood of the t model is given by

l(ν ,µ,σ |x1, . . . ,xn) = logL(ν ,µ,σ |x1, ...,xn) =
n

∑
k=1

log f (xk|ν ,µ,σ).

The logarithm of the density is

log f (x|ν ,µ,σ) =− logσ + logΓ

(
ν +1

2

)
− logΓ

(
ν

2

)
− 1

2
logν− 1

2
logπ

− ν +1
2

log
(

1+
(x−µ)2

νσ2

)
.

The score equations for ν ,µ, and σ are hence given by

∂ l
∂ν

=
n
2

[
ψ

(
ν +1

2

)
−ψ

(
ν

2

)]
− n

2ν
− 1

2

n

∑
k=1

log
(

1+
(xk−µ)2

νσ2

)
+

ν +1
2ν

n

∑
k=1

(xk−µ)2

νσ2 +(xk−µ)2

∂ l
∂ µ

= (ν +1)
n

∑
k=1

xk−µ

νσ2 +(xk−µ)2

∂ l
∂σ

=− 1
σ

[
n− (ν +1)

n

∑
k=1

(xk−µ)2

νσ2 +(xk−µ)2

]
,

where ψ (z) is the digamma function:

ψ (z) =
dlogΓ(z)

dz
.

The density f (x;ν ,µ,σ) is supported on the entire real line and can be differentiated
with respect to each of the parameters. Furthermore, the integral

∫
f (x;ν ,µ,σ)dx can be
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differentiated under the integral sign with respect to each of the parameters. Therefore, the
expected value of each score function is zero. Applying this observation to ∂ l

∂ν
, ∂ l

∂ µ
, and

∂ l
∂σ

, we obtain the results

E
(

(x−µ)2

νσ2 +(x−µ)2

)
=

1
ν +1

E
(

log
(

1+
(x−µ)2

νσ2

))
= ψ

(
ν +1

2

)
−ψ

(
ν

2

)
E
(

(x−µ)
νσ2 +(x−µ)2

)
= 0.

The second derivatives can all be calculated in similar fashion, albeit with some tedious
algebra.

∂ 2l
∂ν2 =

n
4

[
ψ
′
(

ν +1
2

)
−ψ

′
(

ν

2

)]
+

n
2ν2 +

ν−1
2ν2

n

∑
k=1

(xk−µ)2

νσ2 +(xk−µ)2

−σ
2 ν +1

2ν

n

∑
k=1

(xk−µ)2

(νσ2 +(xk−µ)2)2

∂ 2l
∂ µ2 = (ν +1)

n

∑
k=1

−νσ2 +(xk−µ)2

(νσ2 +(xk−µ)2)2

∂ 2l
∂σ2 =

1
σ2

[
n− (ν +1)

n

∑
k=1

(xk−µ)2

νσ2 +(xk−µ)2

]
−2ν(ν +1)

n

∑
k=1

(x−µ)2

(νσ2 +(xk−µ)2)2

∂ 2l
∂σ∂ µ

=−2ν(ν +1)σ
n

∑
k=1

xk−µ

(νσ2 +(xk−µ)2)2

∂ 2l
∂ν∂ µ

=
n

∑
k=1

xk−µ

νσ2 +(xk−µ)2 − (ν +1)σ2
n

∑
k=1

xk−µ

(νσ2 +(xk−µ)2)2

∂ 2l
∂σ∂ν

=
1
σ

n

∑
k=1

(xk−µ)2

νσ2 +(xk−µ)2 −σ(ν +1)
n

∑
k=1

(xk−µ)2

(νσ2 +(xk−µ)2)2

The derivative ψ ′ (z) of the digamma function is known as the trigamma function.

Since the logarithm of the density is twice differentiable with respect to each of pa-
rameters, the information matrix I(ν ,µ,σ) is the negative of the expectation of the matrix
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of second derivatives. By using our previous observations, and the calculations

E

(
1

(νσ2 +(x−µ)2)2

)
=

1
νσ4

ν +2
(ν +1)(ν +3)

E

(
x−µ

(νσ2 +(x−µ)2)2

)
= 0

E

(
(x−µ)2

(νσ2 +(x−µ)2)2

)
= E

(
1

νσ2 +(x−µ)2

)
−E

(
νσ2

(νσ2 +(x−µ)2)2

)
=

1
σ2(ν +1)

−νσ
2 1

νσ4
ν +2

(ν +1)(ν +3)
=

1
σ2(ν +1)(ν +3)

.

we can explicitly calculate the expected information matrix.

In(ν ,µ,σ)= n

1
4

[
ψ ′ (ν

2

)
−ψ ′ (ν+1

2

)]
− 1

ν

[
1

ν+1 −
1

2(ν+3)

]
0 1

σ

[ 1
ν+3 −

1
ν+1

]
0 1

σ2

[
1− 2

ν+3

]
0

1
σ

[ 1
ν+3 −

1
ν+1

]
0 2

σ2
ν

ν+3

 .

For notational convenience, let us denote the diagonal terms of this matrix by A, B, and C,
in that order, and the lone nonzero off-diagonal term by D. In this notation, the determinant
of the information matrix is B(AC−D2), and the inverse is given by

I−1
n (ν ,µ,σ) =

1
n

1
B(AC−D2)

 BC 0 −DB
0 AC−D2 0

−DB 0 AB


Figures 3.1-3.4 show the dependence of the asymptotic variances and correlations of

the MLE’s on ν for various values of σ .
The shape of the variance of ν̂ as a function of ν is somewhat surprising, so we veri-

fied that the variance increased with ν via (a) Monte Carlo simulation and (b) computing
the asymptotic variance in the case when σ and µ are known. We believe that the variance
increases with ν because, for ν large, the densities are very closely approximated by the
normal distribution. Hence, for ν large, the densities are harder to distinguish from one
another—data generated from a T10 look similar to data generated from a T11.

3.3 Estimators
Figures 3.5 and 3.6 show empirical influence functions for the maximum likelihood esti-
mator and Q-Q estimator, respectively, of ν . The EIF of the maximum likelihood estima-
tor shows that large outliers lead to smaller estimates of ν (see the lower panels of Figure
3.5), while inliers (near 0) lead to larger estimates of ν (i.e., the fitted distribution is more
normal). The Q-Q estimator shows similar behavior, but is more severely influenced by
outliers as ν increases.
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Figure 3.1: Asymptotic Variance of ν .

Figure 3.2: Asymptotic Variance of µ .
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Figure 3.3: Asymptotic Variance of σ .

Figure 3.4: Asymptotic Correlation of σ and ν .
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Chapter 4

Performance of Estimators

4.1 Estimator comparisons
In order to compare the performance (bias and variance) of the estimators we have dis-
cussed in Chapter 2 and 3, we performed a Monte Carlo study similar to that performed
by Rachev and Mittnik [RM00]. We used a sample size of n = 1000 and 400 replications
for each set of parameters. The results are displayed as boxplots below.

4.1.1 Estimators of stable distribution parameters
We studied the four estimators of the stable law parameters we discussed in Chapter 2—
McCulloch’s quantile estimator, Kogon and Williams’s regression-based estimator, the
maximum likelihood estimator, and the modified Q-Q estimator. We considered all com-
binations of the parameter sets α ∈ {1.25,1.50,1.75,2.00}, β ∈ {−1,−0.5,0,0.5,1}. The
scale and location parameters were standardized to 1 and 0. The resulting boxplots are
shown in Figures 4.1-4.20.

Results

• As an estimator of α , the MLE was (in all scenarios) the best estimator (in terms of
the median and the spread of the estimator). The modified Q-Q estimator was gen-
erally the worst—it was often biased and almost always showed large variability.
The Kogon-Williams estimator was better than McCulloch’s quantile estimator but
slightly more variable than the MLE. This suggests that, in situations where compu-
tational speed is a factor, the Kogon-Williams estimator is the best substitute for the
MLE (as an estimator of α).

• For estimation of β , there are two main points to take away from the boxplots 4.6-
4.10: (a) away from α = 2, the MLE and the Kogon-Williams estimator are the best
estimators; and (b) near α = 2, all estimators have difficulty estimating β (which
makes sense, since the skewness parameter becomes meaningless at α = 2).

• While all estimators are relatively unbiased for the scale parameter, they are all very
variable.
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• All estimators are good at estimating the location parameter for α sufficiently far
away from 1.

4.1.2 Estimators of t distribution parameters
We studied the two estimators of the t law parameters we discussed in Chapter 3—the
maximum likelihood estimator and the (unmodified) Q-Q estimator. We considered the
parameter set ν ∈ {2,3,5,7}. The scale and location parameters were standardized to 1
and 0. The resulting boxplots are shown in Figures 4.21-4.23.

Results

• The MLE and the Q-Q estimator perform similarly as estimators of ν .

• The Q-Q estimator is biased as an estimator of the scale parameter, but this bias
decreases as ν increases.

• Both estimators have no trouble estimating the location parameter; the Q-Q estima-
tor is very variable at smaller values of ν , though.
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Figure 4.1: Boxplot of stable law parameter estimators of α for β = 1.
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Figure 4.2: Boxplot of stable law parameter estimators of α for β = 0.5.
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Figure 4.3: Boxplot of stable law parameter estimators of α for β = 0.
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Figure 4.4: Boxplot of stable law parameter estimators of α for β =−0.5.
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Figure 4.5: Boxplot of stable law parameter estimators of α for β =−1.
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Figure 4.6: Boxplot of stable law parameter estimators of β for β = 1.
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Figure 4.7: Boxplot of stable law parameter estimators of β for β = 0.5.
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Figure 4.8: Boxplot of stable law parameter estimators of β for β = 0.
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Figure 4.9: Boxplot of stable law parameter estimators of β for β =−0.5.
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Figure 4.10: Boxplot of stable law parameter estimators of β for β =−1.
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Figure 4.11: Boxplot of stable law parameter estimators of σ for β = 1.
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Figure 4.12: Boxplot of stable law parameter estimators of σ for β = 0.5.



4.1. ESTIMATOR COMPARISONS 71

mc(1
.25

)
kw

(1.
25

)
ml(1

.25
)

qq
(1.

25
)

mc(1
.50

)
kw

(1.
50

)
ml(1

.50
)

qq
(1.

50
)

mc(1
.75

)
kw

(1.
75

)
ml(1

.75
)

qq
(1.

75
)

mc(2
.00

)
kw

(2.
00

)
ml(2

.00
)

qq
(2.

00
)

be
ta

 =
  0

 S
am

pl
e 

si
ze

 =
 1

00
0

True sigma=1

1.
00

Figure 4.13: Boxplot of stable law parameter estimators of σ for β = 0.
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Figure 4.14: Boxplot of stable law parameter estimators of σ for β =−0.5.
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Figure 4.15: Boxplot of stable law parameter estimators of σ for β =−1.
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Figure 4.16: Boxplot of stable law parameter estimators of µ for β = 1.
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Figure 4.17: Boxplot of stable law parameter estimators of µ for β = 0.5.
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Figure 4.18: Boxplot of stable law parameter estimators of µ for β = 0.
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Figure 4.19: Boxplot of stable law parameter estimators of µ for β =−0.5.
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Figure 4.20: Boxplot of stable law parameter estimators of µ for β =−1.
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Figure 4.21: Boxplot of t law parameter estimators of ν .
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Figure 4.22: Boxplot of t law parameter estimators of σ .
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Chapter 5

The Relationship Between Tail-Fatness
and Firm Size

5.1 Introduction
It has been empirically observed that firm size is related to tail fatness; specifically, the
distribution of returns for large firms tends to look fairly normal, while small firms tend to
have return distributions with heavier tails than a normal distribution.

5.2 Stable Law Parameters and Firm Size

5.2.1 Data Setup
We obtained four years of daily returns and size1 data on firms (with common stock) listed
on the three major exchanges (NYSE, AMEX, Nasdaq) from the CRSP database [CRS].
Due to computational limitations, we split each firm’s data by year (2001-2004). We fit a
stable law to each firm’s data using the maximum likelihood estimator. Financial returns
are usually assumed to have a mean, so we constrain α to lie in [1,2] during the fit. Since
there are convergence issues when small samples with the MLE for the stable laws (due to
the approximations), we eliminated firms with fewer than 100 observations or any missing
return values. This left us with approximately 7000 firms each year.

Our density approximation is known to be inaccurate near α = 1. Therefore, we do
not trust any computed values that are less than 1.25, and we have removed all such firms
from our sample (approximately 500 firms each year).

5.2.2 Statistics
Summary statistics for the MLE’s of the stable law parameters are shown in Tables 5.1-5.4.
Histograms of the estimates by year are shown in Figures 5.1-5.4.

1Here firm size is measured by the logarithm of market equity—the product of the price per share and
the number of shares outstanding of the firm’s stock.
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Estimates of α

2001 2002 2003 2004
Min 1.250 1.250 1.250 1.250
25% 1.520 1.560 1.580 1.600
Median 1.640 1.690 1.720 1.730
Mean 1.640 1.680 1.700 1.720
75% 1.760 1.810 1.840 1.850
Max 2.000 2.000 2.000 2.000
Std 0.167 0.174 0.176 0.171
MAD 0.178 0.189 0.189 0.185
NA 0.000 0.000 0.000 0.000

Table 5.1: Summary statistics of estimates of α by year.

Estimates of β

2001 2002 2003 2004
Min −0.999 −0.999 −0.999 −1.000
25% 0.029 −0.002 0.030 −0.091
Median 0.185 0.170 0.239 0.139
Mean 0.211 0.213 0.241 0.128
75% 0.390 0.407 0.469 0.377
Max 1.000 1.000 1.000 1.000
Std 0.353 0.383 0.420 0.452
MAD 0.260 0.287 0.323 0.347
NA 0.000 0.000 0.000 0.000

Table 5.2: Summary statistics of estimates of β by year.

Estimates of σ

2001 2002 2003 2004
Min 0.00116 0.00078 0.00069 0.00063
25% 0.01230 0.01220 0.00934 0.00844
Median 0.02040 0.01860 0.01380 0.01230
Mean 0.02430 0.02200 0.01650 0.01410
75% 0.03280 0.02890 0.02130 0.01830
Max 0.12900 0.14400 0.10600 0.06280
Std 0.01580 0.01410 0.01050 0.00772
MAD 0.01390 0.01150 0.00826 0.00676
NA 0.00000 0.00000 0.00000 0.00000

Table 5.3: Summary statistics of estimates of σ by year.
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Figure 5.1: Histogram of ML-estimates of the stable index parameter.
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Figure 5.2: Histogram of ML-estimates of the skewness parameter.
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Figure 5.3: Histogram of ML-estimates of the scale parameter.
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Figure 5.4: Histogram of ML-estimates of the location parameter.
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Estimates of µ

2001 2002 2003 2004
Min −0.03130 −0.03620 −0.03260 −0.03200
25% 0.00007 −0.00078 −0.00082 −0.00129
Median 0.00122 0.00031 0.00045 0.00012
Mean 0.00179 0.00025 −0.00025 −0.00056
75% 0.00305 0.00131 0.00133 0.00097
Max 0.03790 0.02980 0.01090 0.00908
Std 0.00358 0.00306 0.00309 0.00276
MAD 0.00208 0.00154 0.00152 0.00152
NA 0.00000 0.00000 0.00000 0.00000

Table 5.4: Summary statistics of estimates of µ by year.
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2001 2002 2003 2004
α 0.065 0.034 0.020 0.035
β -0.030 -0.007 0.002 0.018
σ -0.060 -0.046 -0.032 -0.045
µ -0.009 0.004 0.008 0.030

Table 5.5: Correlation of stable parameters with median size, by year.

5.2.3 Plots
As a first step in our investigation of the relationship between firm size and the stable
law parameters, we have produced hexbin plots2 of each firm’s parameter estimates versus
its median size (Figs. 5.5-5.8). We also computed the correlation between each of the
parameters and the median size for each year; these results are shown in Table 5.5. From
the hexbin plots and the correlation coefficients we surmise

• there is a weak linear relationship between the stable index α and size;

• no apparent relationship between the skewness parameter β and size;

• a nonlinear relationship between the scale parameter σ and size; and

• the location parameter is near zero most of the time, but there were a large number
of negative returns in small firms in 2003 and 2004.

2A hexbin plot is a modification of the usual scatterplot, in which hexagons are used to represent groups
of nearby points. The size of a hexagon reflects the density of points nearby. See [CLNL87] for further
discussion of this technique.
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Figure 5.5: Hexbin plots of ML-estimated stable index versus median size.
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Figure 5.6: Hexbin plots of ML-estimated skewness parameter versus median size.
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Figure 5.7: Hexbin plots of ML-estimated scale parameter versus median size.
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Figure 5.8: Hexbin plots of ML-estimated location parameter versus median size.
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In order to clarify the relationship between the stable index and size, we produced
a Trellis version of our scatterplot (Figs. 5.9-5.12, in which the data are separated by
standard size categories (“NANO”, “MICRO”, “SMALL”, “MEDIUM”, “LARGE”, and
“MEGA”). We also computed the correlation of each the index parameter with size within
the levels of size (Table 5.6). These plots and the correlation coefficients again suggest
a weakly linear relationship between size and the stable index, except for the “MEGA”
class, where there isn’t enough data to really see anything, and the “NANO” class, where
no relationship is obvious.

NANO MICRO SMALL MEDIUM LARGE MEGA
2001 0.011 0.009 0.048 0.103 0.106 0.086
2002 -0.026 -0.039 0.067 0.113 0.014 0.486
2003 -0.024 -0.007 0.003 -0.053 -0.018 -0.216
2004 -0.038 0.008 0.016 0.082 0.063 -0.535

Table 5.6: Correlation of stable index with median size, by year and market capitalization
class.



96 CHAPTER 5. TAIL-FATNESS AND FIRM SIZE

1.41.61.82.0

-4
-2

0
2

4

N
AN

O

1.41.61.82.0

4.
0

4.
5

5.
0

5.
5

M
IC

R
O

1.41.61.82.0

6.
0

6.
5

7.
0

7.
5

S
M

A
LL

1.41.61.82.0

8.
0

8.
5

9.
0

M
ID

1.41.61.82.0

9.
5

10
.0

11
.0

12
.0

LA
R

G
E

1.651.751.851.95

12
.4

12
.6

12
.8

M
E

G
A

M
ed

ia
n 

of
 lo

g(
m

ar
ke

t e
qu

ity
)

Stable index (alpha)

D
ep

en
de

nc
e 

of
 a

lp
ha

 o
n 

si
ze

, m
ax

im
um

 li
ke

lih
oo

d 
es

tim
at

or
, 2

00
1

Figure 5.9: Scatterplot of ML-estimated stable index parameter against median size, within
levels of size, for 2001 data. A loess line has been added to each panel.
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Figure 5.10: Scatterplot of ML-estimated stable index parameter against median size,
within levels of size, for 2002 data. A loess line has been added to each panel.
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Figure 5.11: Scatterplot of ML-estimated stable index parameter against median size,
within levels of size, for 2003 data. A loess line has been added to each panel.
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Figure 5.12: Scatterplot of ML-estimated stable index parameter against median size,
within levels of size, for 2004 data. A loess line has been added to each panel.
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5.2.4 Models
Based upon our scatterplots, we try to model the stable index as a linear function of size:

αi = β0 +β1 log(MEi)+ εi (5.2.1)

using both classical and robust linear regression. The results of this fit are shown in Tables
5.7-5.10. The fitted coefficients are significant (with one exception), but the model ex-
plains very little of the observed variation. The classical and robust regressions agree, so
there is little reason so suspect the classical results were adversely affected by outliers.

2001 Coef. Std.Error t value Pr(>|t|)
(Intercept) classical 1.610 0.005 313.023 0.000
(Intercept) robust 1.609 0.005 298.290 0.000
median.size.2001 classical 0.005 0.001 5.395 0.000
median.size.2001 robust 0.005 0.001 5.288 0.000

classical robust
Residual scale estimate 0.166 0.178
Percentage of variation explained 0.004 0.004

Table 5.7: Results of classical and robust linear regression of stable index on median size
for year 2001.

2002 Coef. Std.Error t value Pr(>|t|)
(Intercept) classical 1.663 0.006 301.415 0.000
(Intercept) robust 1.664 0.006 271.240 0.000
median.size.2002 classical 0.003 0.001 2.776 0.006
median.size.2002 robust 0.003 0.001 2.590 0.010

classical robust
Residual scale estimate 0.174 0.184
Percentage of variation explained 0.001 0.001

Table 5.8: Results of classical and robust linear regression of stable index on median size
for year 2002.

Next we again try to model the stable index as a linear function of size, but with a different
intercept for each size class.

αi = βSIZE +β1 log(MEi)+ εi (5.2.2)

using both classical and robust linear regression. The results of this fit are shown in Ta-
bles 5.11-5.14. The fitted intercepts are now significant, but the slope coefficents are not
significant in 2002, 2003, and 2004. The model explains much of the observed variation,
however, even though the residual scale is still rather large.
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2003 Coef. Std.Error t value Pr(>|t|)
(Intercept) classical 1.694 0.006 268.849 0.000
(Intercept) robust 1.697 0.007 235.918 0.000
median.size.2003 classical 0.002 0.001 1.575 0.115
median.size.2003 robust 0.002 0.001 1.486 0.137

classical robust
Residual scale estimate 0.176 0.185
Percentage of variation explained 0.000 0.000

Table 5.9: Results of classical and robust linear regression of stable index on median size
for year 2003.

2004 Coef. Std.Error t value Pr(>|t|)
(Intercept) classical 1.700 0.007 255.191 0.000
(Intercept) robust 1.701 0.007 232.128 0.000
median.size.2004 classical 0.003 0.001 2.749 0.006
median.size.2004 robust 0.003 0.001 2.747 0.006

classical robust
Residual scale estimate 0.170 0.181
Percentage of variation explained 0.001 0.001

Table 5.10: Results of classical and robust linear regression of stable index on median size
for year 2004.
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2001 Coef. Std.Error t value Pr(>|t|)
cap.classes.median.2001NANO classical 1.606 0.009 178.637 0.000
cap.classes.median.2001NANO robust 1.606 0.009 178.637 0.000
cap.classes.median.2001MICRO classical 1.604 0.015 108.667 0.000
cap.classes.median.2001MICRO robust 1.604 0.015 108.667 0.000
cap.classes.median.2001SMALL classical 1.603 0.020 80.108 0.000
cap.classes.median.2001SMALL robust 1.603 0.020 80.108 0.000
cap.classes.median.2001MID classical 1.602 0.026 62.186 0.000
cap.classes.median.2001MID robust 1.602 0.026 62.186 0.000
cap.classes.median.2001LARGE classical 1.579 0.032 49.065 0.000
cap.classes.median.2001LARGE robust 1.579 0.032 49.065 0.000
cap.classes.median.2001MEGA classical 1.691 0.078 21.785 0.000
cap.classes.median.2001MEGA robust 1.691 0.078 21.785 0.000
median.size.2001 classical 0.006 0.003 2.145 0.032
median.size.2001 robust 0.006 0.003 2.145 0.032

classical robust
Residual scale estimate 0.166 0.166
Percentage of variation explained 0.990 0.990

Table 5.11: Results of classical and robust linear regression of stable index on median size
for year 2001 .

2002 Coef. Std.Error t value Pr(>|t|)
cap.classes.median.2002NANO classical 1.671 0.009 184.122 0.000
cap.classes.median.2002NANO robust 1.671 0.009 184.122 0.000
cap.classes.median.2002MICRO classical 1.680 0.015 110.133 0.000
cap.classes.median.2002MICRO robust 1.680 0.015 110.133 0.000
cap.classes.median.2002SMALL classical 1.686 0.021 81.501 0.000
cap.classes.median.2002SMALL robust 1.686 0.021 81.501 0.000
cap.classes.median.2002MID classical 1.685 0.027 63.165 0.000
cap.classes.median.2002MID robust 1.685 0.027 63.165 0.000
cap.classes.median.2002LARGE classical 1.710 0.033 51.201 0.000
cap.classes.median.2002LARGE robust 1.710 0.033 51.201 0.000
cap.classes.median.2002MEGA classical 1.665 0.087 19.155 0.000
cap.classes.median.2002MEGA robust 1.665 0.087 19.155 0.000
median.size.2002 classical -0.001 0.003 -0.181 0.856
median.size.2002 robust -0.001 0.003 -0.181 0.856

classical robust
Residual scale estimate 0.174 0.174
Percentage of variation explained 0.989 0.989

Table 5.12: Results of classical and robust linear regression of stable index on median size
for year 2002 .
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2003 Coef. Std.Error t value Pr(>|t|)
cap.classes.median.2003NANO classical 1.708 0.011 159.990 0.000
cap.classes.median.2003NANO robust 1.708 0.011 159.990 0.000
cap.classes.median.2003MICRO classical 1.723 0.017 100.824 0.000
cap.classes.median.2003MICRO robust 1.723 0.017 100.824 0.000
cap.classes.median.2003SMALL classical 1.725 0.023 74.812 0.000
cap.classes.median.2003SMALL robust 1.725 0.023 74.812 0.000
cap.classes.median.2003MID classical 1.741 0.030 58.933 0.000
cap.classes.median.2003MID robust 1.741 0.030 58.933 0.000
cap.classes.median.2003LARGE classical 1.766 0.037 48.220 0.000
cap.classes.median.2003LARGE robust 1.766 0.037 48.220 0.000
cap.classes.median.2003MEGA classical 1.789 0.084 21.344 0.000
cap.classes.median.2003MEGA robust 1.789 0.084 21.344 0.000
median.size.2003 classical -0.004 0.003 -1.062 0.288
median.size.2003 robust -0.004 0.003 -1.062 0.288

classical robust
Residual scale estimate 0.176 0.176
Percentage of variation explained 0.989 0.989

Table 5.13: Results of classical and robust linear regression of stable index on median size
for year 2003 .

2004 Coef. Std.Error t value Pr(>|t|)
cap.classes.median.2004NANO classical 1.705 0.012 139.202 0.000
cap.classes.median.2004NANO robust 1.705 0.012 139.202 0.000
cap.classes.median.2004MICRO classical 1.702 0.018 92.282 0.000
cap.classes.median.2004MICRO robust 1.702 0.018 92.282 0.000
cap.classes.median.2004SMALL classical 1.704 0.025 68.616 0.000
cap.classes.median.2004SMALL robust 1.704 0.025 68.616 0.000
cap.classes.median.2004MID classical 1.703 0.032 54.007 0.000
cap.classes.median.2004MID robust 1.703 0.032 54.007 0.000
cap.classes.median.2004LARGE classical 1.716 0.039 44.163 0.000
cap.classes.median.2004LARGE robust 1.716 0.039 44.163 0.000
cap.classes.median.2004MEGA classical 1.760 0.084 20.987 0.000
cap.classes.median.2004MEGA robust 1.760 0.084 20.987 0.000
median.size.2004 classical 0.002 0.004 0.623 0.533
median.size.2004 robust 0.002 0.004 0.623 0.533

classical robust
Residual scale estimate 0.170 0.170
Percentage of variation explained 0.990 0.990

Table 5.14: Results of classical and robust linear regression of stable index on median size
for year 2004 .
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5.3 Cross-Sectional Analysis
In the second portion of our experiment, we attempted to find the “best” proxy for the tail
index out of a small set of indicators of firm size—the logarithm of market equity, the ratio
of the book equity to the market equity, and the price-earnings ratio.

We obtained daily prices, returns, and market equity on firms listed on the three major
exchanges from the CRSP database [CRS]. Prices were adjusted for splits using the modi-
fied adjustment factor (cfacpr) provided by Wharton Research Data Services (WRDS).
The daily prices and market equity were converted to monthly values by taking the value
on the closing day of each month.

Due to time constraints, we fit a t-distribution to each firms returns on a monthly
basis using the previous 12 months of data. To remove the occasional gross outlier in
the fitted values (presumably due to periods where the returns looked very Gaussian), the
fitted values were smoothed using a robust-version of the exponentially-weighted moving
average

S1 = X1

Sn = λ min(Xn,a∗Xn−1)+(1−λ )Sn−1.

We used a = 10 and λ = 0.93.
Next, we gathered accounting data (book equity and earnings per share (excluding

extraordinary items) and industry data (GICS codes) from the Compustat [Sta] North
American Annual database. These values were converted to monthly values via linear
interpolation.

We then performed cross-sectional regression on the joined data.
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