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Abstract

Hardin and Rocke investigated the distribution of the robust Mahalanobis squared distance (RSD)
computed using the minimum covariance determinant (MCD) estimator. They showed that the distri-
bution of RSDs for outlying observations not part of the MCD subset is well-approximated by an F
distribution. They developed a methodology to adjust an asymptotic formula for the degrees of freedom
parameters of this F distribution to provide correct parameter values in small-to-moderate samples. This
methodology was developed for the maximum breakdown point version of the MCD, which is based on
approximately half of the observations. Whether the approximation remains accurate for the MCD using
larger subsets of the data is an open question. We show that their approximation works quite well for
the more general MCD, but can be noticeably inaccurate for sample sizes less than 250 and when the
MCD estimate uses nearly all of the observations. Motivated by the desire to apply RSD-based outlier
detection tests to financial asset return and factor exposure data sets whose typical sample sizes are
smaller than 250, we develop a more general correction procedure that is accurate across a wider range
of sample sizes and MCD subset sizes than the Hardin and Rocke approach. We use our approach to
extend Cerioli’s IRMCD procedure for accurate RSD-based outlier tests to arbitrary MCD subset sizes.
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1 Introduction

Detection and mitigation of outliers in multivariate data remains a challenging problem. A common met-
hod of detecting outliers in multivariate data is through the use of Mahalanobis distances. Mahalanobis
distances, introduced in Mahalanobis (1936), measure the distance of an observation from the mean of a
distribution, weighted by the correlation information contained in the covariance matrix (Seber, 1984). If x

is an observation from a multivariate distribution with mean µ and covariance Σ, the Mahalanobis squared
distance (MSD) of x from µ is defined as

D2 ≡ (x− µ)TΣ−1(x− µ). (1)

When x is ν-dimensional multivariate normal with known mean and covariance, the population MSD is
distributed as a chi-squared χ2

ν random variable with ν degrees of freedom (Mardia et al., 1979; Seber, 1984).
This suggests a test of deviation from the multivariate normal assumption: compare an observation’s MSD
to an appropriate quantile of the chi-squared distribution. An observation may be an outlier if its associated
value of D2 is larger than some critical threshold derived from the distribution of D2.

In common practice the unknown mean µ and covariance Σ are replaced by their classical estimates
µ̂ = x, the coordinate-wise sample mean, and

Σ̂ =
1

n− 1

n∑
i=1

(xi − x)(xi − x)T , (2)

the sample covariance matrix. When the xi are multivariate normal, the resulting sample MSDs are approx-
imately chi-squared for “moderate” values of n, but in higher dimensions larger sample sizes are needed for
the approximation to be reasonably accurate. Small (1978) shows that in dimension ν = 4, the chi-squared
approximation is noticeably inaccurate in sample sizes as small as n = 100. Gnanadesikan and Kettenring
(1972) showed (using an earlier result of Wilks (1962)) that the exact distribution of the sample MSDs in
this situation is a scaled Beta distribution. In practice, however, the chi-squared approximation is used,
either for simplicity or due to a lack of awareness that the accuracy of the approximation depends on the
dimension of the data.

Since the classical covariance estimator (2) is not robust to outliers (see, for instance, Maronna et al.
(2006)), using it in the Mahalanobis distance metric could lead to some good observations being flagged
as outliers (known as “swamping” in the literature) (Rousseeuw and van Zomeren, 1990, 1991; Becker and
Gather, 1999; Peña and Prieto, 2001). Moreover, when there are multiple outliers, the classical Mahalanobis
distance metric may lead to “masking” of moderate outliers by one extreme outlier (Pearson and Chandra
Sekar, 1936; Rocke and Woodruff, 1996). This suggests replacing the sample mean and covariance estimate
in Equation (1) with estimates of location and dispersion that are robust to outliers. We will refer to
the resulting distance metric as the robust Mahalanobis squared distance (RSD). The robust estimates
downweight or ignore the outliers, and thus provide a better representation of the location and dispersion of
the majority of the data. Non-outlying points should hence be closer to the location estimate than outlying
points, and outlying points should have larger distances than expected under the multivariate normal model.

It remains to calculate an approximate sampling distribution for RSDs in order to identify these outliers.
Unfortunately, determining appropriate critical values for the Mahalanobis distance test is more challenging
in the robust case than in the classical case. The exact finite-sample distribution is not known for any of
the common robust dispersion estimates. The distributional assumption used to test the distances in the
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classical case, namely that the distances are independent and identically distributed (IID) chi-squared χ2
ν

random variables, only holds asymptotically in the robust case when the dispersion estimate is consistent for
Σ (Mardia et al., 1979; Serfling, 1980; Seber, 1984). As we discuss below, the sample sizes needed to justify
using the asymptotic approximation increase as the dimension of the data increases.

The problem of calculating good approximations to the sampling distribution of RSDs has been studied
most extensively for the minimum covariance determinant (MCD) estimator introduced by Rousseeuw (1985).
Briefly, for 0 < γ < 1/2, the MCD(γ) dispersion estimate is the sample covariance of the subset of h ≈ (1−γ)n

observations whose covariance matrix has the smallest determinant, over all possible h element subsets of
the n observations. For the MCD estimate, it is known that using χ2

ν quantiles for critical values can lead to
many more false positives than expected in small to moderate samples, especially when the data set actually
does not contain any outliers (Rousseeuw and van Zomeren, 1991; Becker and Gather, 2001). In fact, Cerioli
et al. (2009) found that the use of the χ2

ν approximation leads to a serious problem for MCD-based distance
tests for outlyingness: the realized false positive rates of the tests can be substantially larger than the nominal
false positive rates even in moderate sample sizes.

Cerioli et al. (2009) looked at how well MCD-based Mahalanobis distances performed both in an individual
testing framework (“is this observation an outlier?”) and under a simultaneous testing framework (“are there
any outliers in the data?”). First they conducted a simulation experiment in which each observation was
tested for outlyingness at some nominal test size (say, α = 0.01). We expect to see about bαnc incorrectly
flagged observations on average. Their simulations show this is not the case for the MCD with χ2

ν critical
values. Testing MCD-based distances against χ2

ν critical values requires large sample sizes to be reliably
accurate, with the needed sample size increasing with dimension ν. For small to moderate sample sizes the
χ2
ν critical values can give significantly more false positives than expected based on the nominal test size: in

dimension ν = 10 the average false positive rate is about 5 times too large for n = 200, and about 13 times
too large for n = 100. (Further details are available in Appendix A of Green (2017).)

Cerioli et al. (2009) then looked at the accuracy of tests of the intersection null hypothesis

H0 : {x1 ∼ N (µ,Σ)} ∩ · · · ∩ {xn ∼ N (µ,Σ)} (3)

that examines whether there are any outliers in the data (as opposed to whether a given observation is
outlying). The obvious way to perform this test is via comparison of the largest RSD in the set of obser-
vations to an appropriate quantile at a Bonferroni-corrected size α/n. The quantile could come from the
χ2
ν distribution, as done in Becker and Gather (1999, 2001), or the scaled F distribution derived by Hardin

and Rocke (2005). Again via a simulation study, Cerioli et al. showed that the χ2
ν quantile works poorly for

testing the intersection hypothesis with the maximum breakdown point case of the MCD, with false positive
rates 50–100 times too large for small samples in dimension ν = 10. Subsequently, Cerioli (2010) developed
a methodology, the Iterated Reweighted MCD (IRMCD), that yields RSD-based tests for outliers with the
correct false positive rates for both the individual and intersection tests. Cerioli’s approach (described in
Section 4.3) works for the MCD estimator and relies upon the distributional approximation developed by
Hardin and Rocke (2005).

For financial applications, however, we would not want to use the maximum-breakdown point case of
MCD, as it discards nearly half of the data to compute the estimate. We would recommend that a practitioner
use the MCD with 90% or more (i.e., γ ≤ 0.10) of the observations, depending on the sample size. This choice
of trimming would only exclude extreme outliers from the estimate. Although Cerioli (2010) presents tests
of the IRMCD methodology for MCD(0.25), the methodology depends on the distributional approximation
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developed by Hardin and Rocke (2005). That distributional approximation uses a correction developed only
for the maximum-breakdown point case of MCD. We were not aware of any studies examining how well the
Hardin-Rocke correction works for the more general version of the MCD, so we conducted simulations to test
the accuracy of the approximation outside of its original design parameters. We found that the Hardin-Rocke
approximation works well in moderate-to-large (n > 500) samples for the general version of the MCD, but
that it is unreliable in smaller samples and/or when 90% or more of the data is used to compute the estimate.
Thus, in order to use IRMCD safely for the MCD in general, we developed an improved approximation for
the distribution of MCD-based RSDs for outlying points. We show our correction methodology is more
accurate than the Hardin-Rocke approach for MCD(γ) for γ as small as 0.005. We validate our approach
using simulated data and via tests of the IRMCD approach.

The remainder of the paper is organized as follows. Section 2 reviews technical details on the MCD esti-
mate, the Hardin-Rocke distributional approximation, and Cerioli’s IRMCD procedure. Section 3 describes
the Hardin-Rocke method for estimating the Wishart degrees of freedom parameter needed to use their dis-
tribution approximation, and describes our improved method that is more accurate than the Hardin-Rocke
method for a wide range of sample sizes, dimensions, and trimming fractions. Section 4 presents several tests
of our model. Section 5 concludes with a discussion of potential future improvements.

2 Technical Background

2.1 The MCD Estimate

Rousseeuw (1985) introduced the minimum covariance determinant (MCD) robust dispersion estimate. Gi-
ven n observations x1, . . . ,xn of dimension ν and a subset of size h ≤ n, the (non-reweighted or raw) MCD
subset of the observations is defined by a set of indices {j1, . . . , jh} such that the determinant of the sample
covariance of the observations xj1 , . . . ,xjh is minimal over all subsets of observations of size h:

det Σ̂ (xj1 , . . .xjh) ≤ det Σ̂ (xk1 , . . .xkh) ,

for any subset {k1, . . . , kh} of {1, . . . , n} with cardinality h and satisfying 1 ≤ k1 < · · · < kh ≤ n. The
MCD estimate of the dispersion matrix of the data is then the sample covariance matrix SMCD of the MCD
subset, and the MCD estimate of the location vector is the sample mean XMCD of the MCD subset.

Croux and Haesbroeck (1999) demonstrate that the efficiency of the raw MCD is rather low for the
maximum breakdown point case, especially in small dimensions. Cerioli therefore uses a reweighted MCD
in his IRMCD procedure. Reweighting the observations using the raw MCD estimate can increase the
efficiency of the estimate while preserving its breakdown point (Lopuhaä, 1999; Croux and Haesbroeck,
1999). A “reweighted” MCD is calculated by computing the “raw” MCD based on the given observations and
then excluding observations based on their RSD (using χ2

ν critical values). The reweighted MCD estimate
is then the classical mean and covariance of the remaining observations.

The MCD is computationally difficult because it involves a combinatorial optimization problem. In
practice most MCD implementations actually compute an approximate solution by optimizing over a random
subset of all possible size-h subsets of the n observations. Rousseeuw and van Driessen (1999) developed the
fastMCD algorithm based upon this idea. The fastMCD algorithm is used in the covMcd function in the R

package robustbase and is used in all calculations below.
Although we have defined the MCD in terms of the number of observations h used to compute the
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estimate, it is often convenient to think of the MCD in terms of the asymptotic fraction γ, 0 < γ < 1/2,
of the data trimmed from the MCD estimate, as this fraction controls its properties such as its breakdown
point and efficiency. In the R function covMcd implementing the MCD, one specifies 1 − γ, the asymptotic
fraction of observations used in the MCD, as an input parameter. The value h is then computed from 1− γ
as

h = b2n2 − n+ 2(n− n2)(1− γ)c

= b(2n2 − n)γ + n(1− γ)c , (4)

where

n2 =

⌊
n+ ν + 1

2

⌋
.

If n is even, then

n2 =
n

2
+

⌊
ν + 1

2

⌋
,

and, after a bit of algebra, we have

h =

⌊
n−

(
n− 2

⌊
ν + 1

2

⌋)
γ

⌋
= n−

⌈(
n− 2

⌊
ν + 1

2

⌋)
γ

⌉
. (5)

Similarly if n is odd we can show that

h = n−
⌈(

n− 2

⌊
ν + 1

2

⌋
− 1

)
γ

⌉
.

When n � ν, the quantity 1 − h/n will be approximately equal to γ, so that h ≈ (1 − γ)n and the MCD
estimate trims approximately nγ observations. This motivates our use of γ as an approximate or asymptotic
“trimming fraction” (Maechler, 2016).

The definition (4) ensures that in smaller samples the value of h computed using (4) will be strictly
smaller than n, even if γ is very small. In the n even case, rearranging (5) yields

n− h =

⌈(
n− 2

⌊
ν + 1

2

⌋)
γ

⌉
. (6)

The right hand side will not vanish unless γ = 0 or n = 2
⌊
ν+1
2

⌋
. The MCD is not recommended in situations

where n < 2ν, so the latter situation never occurs provided one follows this recommendation. Thus we have
h < n for any non-degenerate case of MCD(γ).

The number of observations n − h not used in the MCD subset can still be quite different from nγ,
however, when γ is small and/or n is small. For example, suppose again that n is even and that γ = 1/N
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for an integer N . Plugging γ = 1/N into (6) yields

n− h =

⌈(
n− 2

⌊
ν+1
2

⌋)
N

⌉
.

For 1 + 2
⌊
ν+1
2

⌋
≤ n ≤ N + 2

⌊
ν+1
2

⌋
, the right-hand side of this equation will be equal to 1, i.e., MCD(1/N)

will exclude exactly 1 point. Again, in practice we would not use the MCD with n < 2ν, so a more practical
range is

max

{
1 + 2

⌊
ν + 1

2

⌋
, 2ν

}
≤ n ≤ N + 2

⌊
ν + 1

2

⌋
.

This range depends on the dimension ν and the value of γ = 1/N , and is much larger for smaller values of
γ (i.e., larger values of N). For example, for γ = 0.25 = 1/4 and ν = 2, the range is 4 ≤ n ≤ 6, while for
ν = 20 the range will be empty since there are no even n > 40 that satisfy the condition above when N = 4.
For γ = 0.01 = 1/100 and ν = 2, we will have n−h = 1 when 4 ≤ n ≤ 102. When ν = 20 the corresponding
range is 40 ≤ n ≤ 120.

We thus emphasize that γ is an asymptotic trimming fraction. In the remainder of this paper, we will
denote the MCD estimate based on the asymptotic fraction 1− γ of the observations by MCD(γ), with the
above caveats in mind.

In the most commonly used version of the MCD(γ) estimate, the subsample size is set to hMBP =

b(n + ν + 1)/2c, so that 1 − hMBP /n ≈ 1/2 when n � ν. With this subsample size the MCD achieves the
maximum possible breakdown point of 1/2 for large samples. We will use the notation MCD(γ∗) to refer to
the maximum breakdown point case of the MCD.

2.2 The Hardin-Rocke Distributional Approximation

Hardin and Rocke (2005) studied the distribution of (non-reweighted) MCD-based RSDs for the MCD(γ∗)
estimator. Their work was motivated by previous studies such as Rousseeuw and van Zomeren (1991)
that showed that the χ2

ν critical values can be too small in sample sizes n ≤ 50 in dimensions ν ≤ 4,
resulting in many observations being incorrectly flagged as outliers. Hardin and Rocke established that,
when the observations xi arise from a ν-dimensional multivariate normal distribution N(µ,Σ), the RSDs
for observations not in the MCD subset are approximately independent of the RSDs for the MCD subset,
and that the non-MCD subset distances are approximately F distributed rather than χ2

ν distributed. Their
argument rests upon the assumption that the distribution of the scaled MCD(γ∗) estimate dispersion matrix
SMCD is well-approximated by a ν-dimensional Wishart distribution:

m

c
SMCD ∼Wishartν(m,Σ), (7)

where ν is the known dimension of the observations, m is an unknown Wishart degrees of freedom parameter
and c is an unknown consistency constant. Recall that the sample covariance matrix (2) of n observations
from a ν-dimensional multivariate normal distribution follows a scaled ν-dimensional Wishart distribution
with n− 1 degrees of freedom. The MCD(γ∗) estimate SMCD is the sample covariance of the MCD subset
of observations, which is well-modeled by a multivariate normal distribution (assuming the subset does not
possess strong non-linear structure). It is thus reasonable to assume SMCD follows a Wishart distribution,
but with an unknown degrees of freedom parameter.

Hardin and Rocke then show that the sample RSDs for outlying points are approximately F -distributed
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after suitable scaling:
c(m− ν + 1)

mν
D2
SMCD

(
Xi, X̄MCD

)
∼ Fν,m−ν+1. (8)

This F distribution provides more accurate critical values for testing RSDs than the χ2
ν distribution.

3 Estimating the Wishart Degrees of Freedom Parameter in the

Hardin-Rocke F Distribution

In order to use the distribution (8) for MCD(γ∗) or more generally, MCD(γ), we must determine the
parameters c and m. Simulation is the most accurate means of estimating the parameters c and m but
obviously not convenient for everyday use of the Hardin-Rocke F distribution. In this section we will review
the approach developed by Hardin and Rocke to estimate m for use with the MCD(γ∗). We will then show
that their method is inaccurate for small samples n ≤ 250 and for the more general MCD(γ) with small γ
(e.g., γ = 0.05). Finally, we will develop a better model that works reliably across a wide range of sample
sizes, dimensions, and trimming fractions.

3.1 The Hardin-Rocke Adjustment to the Asymptotic Degrees of Freedom

Hardin and Rocke note that if SMCD has the scaled Wishart distribution (7), then its diagonal elements sjj
will be distributed as

mc−1sjj ∼ σjjχ2
m,

where σjj are the diagonal elements of Σ. The MCD estimate is affine equivariant, so one can assume µ = 0,
a vector of zeros, and Σ = I, the identity matrix with σjj = 1. Since a χ2

m random variable has mean m
and variance 2m, we can use the method of moments to estimate m.

E
[
mc−1sjj

]
= m (9)

Var
(
mc−1sjj

)
= 2m

CV =

√
Var(sjj)

E(sjj)
=
c
√

2/m

c
=

√
2

m

where CV is the coefficient of variation. Therefore

m =
2

CV 2
. (10)

Croux and Haesbroeck (1999) derive the influence function for SMCD in the general MCD(γ) case and use
it to calculate the asymptotic variance of SMCD. This calculation provides asymptotic formulas for the
variance of sjj that can be used to estimate CV , and hence, m in large samples. The Appendix to Hardin
and Rocke (2005) summarizes the asymptotic formulas casy and masy(n, ν, γ) for c and m, respectively. We
reproduce their formulas again here for the reader’s convenience.3 Here γ ≈ 1 − h/n is the approximate
fraction of observations trimmed by the MCD as in Section 2.1.

3Our notation here is slightly different from that of Hardin and Rocke (2005). We use ν to represent the dimension rather
than p, and we refer to the fraction of observations trimmed from the MCD as γ rather than α.
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The constant c(ν, γ) is defined as

c(ν, γ) =
1− γ

P
(
χ2
ν+2 ≤ q(ν, 1− γ)

) ,
where q(ν, 1 − γ) is the 1 − γ quantile of a χ2

ν distribution and satisfies 1 − γ = P (χ2
ν ≤ q(ν, 1 − γ)). The

asymptotic consistency constant casy is defined as the reciprocal of c(ν, γ):4

casy = 1/c(ν, γ). (11)

The asymptotic coefficient of variation is given by

CV 2
asy = c(ν, γ)2v(ν, γ),

where v(ν, γ) is the asymptotic variance of the sjj . (The formula for v(ν, γ) is provided in Appendix A.)
Thus from (10) we have

masy(n, ν, γ) =
2

c(ν, γ)2v(ν, γ)
. (12)

Our notation reflects that masy(n, ν, γ) is actually function of n, ν, and γ, even though Hardin and Rocke
only considered the γ = γ∗ case.

Croux and Haesbroeck’s formula for casy is reliable for small samples, but this is not the case for
masy(n, ν, γ). Thus we need a way to estimate m accurately for small to moderate sample sizes (e.g.,
30 ≤ n ≤ 250). Hardin and Rocke estimated the values of m for the MCD(γ∗) estimator via simulation
for sample sizes n = 50, 100, 250, 500, 750, 1000 and dimensions ν = 3, 5, 7, 10, 15, 20. Their procedure is as
follows.

1. Simulate N = 1000 random samples of size n from a ν-dimensional multivariate normal N(0, I).

2. For each random sample, calculate the MCD(γ∗) estimate SMCD. Retain the ν diagonal elements sjj
from each SMCD. There will be a total of Nν such values from all the simulations.

3. Calculate the estimate c̃sim(n, ν, γ∗) of c as the sample mean of the Nν sjj values.

4. Calculate the sample variance ṽsim(n, ν, γ∗) of theNν sjj and use it to calculate an estimate C̃V sim(n, ν, γ∗)2

of the coefficient of variation.

5. Calculate an estimate m̃sim(n, ν, γ∗) of m using (10) as

m̃sim(n, ν, γ∗) =
2

C̃V sim(n, ν, γ∗)
=

2c̃sim(n, ν, γ∗)2

ṽsim(n, ν, γ∗)
.

Obviously m̃sim(n, ν, γ∗) is a function of n and ν, but it is also a function of γ in general since the MCD(γ)
estimator in Step 2 could be used with with any value of γ.

4Different authors define the consistency constant differently, hence the need for an extra constant here.
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Hardin and Rocke then fit the following model to the simulated m̃sim(n, ν, γ∗) using bivariate least squares
regression to estimate the true m from the Croux-Haesbroeck asymptotic masy(n, ν, γ∗) for the γ = γ∗ case:

log

(
m̃sim(n, ν, γ∗)

masy(n, ν, γ∗)

)
= β0 + β1ν + β2 log n+ εn,ν , εn,ν

iid∼ N(0, 1)

where ε is an error term. They used the 36 values of m̃sim(n, ν, γ∗) to compute values of log (m̃sim(n, ν, γ∗)/masy(n, ν, γ∗)),
which were then regressed on the corresponding 36 pairs of predictors (ν, log(n)) for the 6 values of ν and 6
values of n stated above. The final fitted model is

log

(
m

masy(n, ν, γ∗)

)
= 0.725− 0.00663ν − 0.0780 log(n). (13)

We will refer to the above formula to estimate m from masy(n, ν, γ) as the “Hardin-Rocke adjustment”.
Hardin-Rocke established via simulation that their method gives more accurate results, in terms of

detecting an appropriate number of outliers, for the MCD-based RSD tests than the standard χ2
ν-based

tests. The simulation study of Cerioli et al. (2009) further affirmed that, for sample sizes n > 100 and even
dimensions up to ν = 12, the Hardin-Rocke quantiles were more accurate for testing individual observations
for outlyingness than the χ2

ν quantiles for the MCD(γ∗) case. Unfortunately, their study also showed that
Hardin-Rocke approach can still result in too many false positives for sample sizes n ≤ 100. There is also the
question of how well the Hardin-Rocke adjustment works for small values of values of γ other than γ∗. While
the formulas for casy andmasy(n, ν, γ) are valid for arbitrary values of γ, Hardin and Rocke’s simulated values
m̃sim(n, ν, γ) were estimated using the MCD(γ∗). It is not clear from the Hardin and Rocke paper how well
their approximation (13) works for other fractions γ, nor have we seen any research into this matter.

In the next section we show that the Hardin-Rocke adjustment (13) does not work well for sample sizes
less than 250 when γ ∈ {0.25, 0.05, 0.01}. The ensuing sections will then detail our development of a new
model that works more reliably across a larger range of sample sizes, dimensions, and trimming fractions.

3.2 Testing the Hardin-Rocke Adjustment for Other Values of γ

First, we consider how the 0.01 critical value, i.e., the 0.99 quantile, from the Hardin-Rocke scaled F

distribution varies with the input parameters m and ν. For dimensions ν = 5, 10, 20 and integer values of m
satisifying ν ≤ m ≤ 20ν, we calculated the logarithm of the 0.99 quantile of the Hardin-Rocke F distribution
given in (8). Figure 1 shows how the logarithm of the 0.99 quantile depends on the Wishart degrees of
freedom parameter m for ν = 5, 10, 20. For fixed values of dimension ν, larger values of m lead to smaller
quantiles. Thus if we overpredict m, the quantiles of the F distribution will be too small, and we will reject
more observations than we should.

Next we examine how well the Hardin-Rocke adjustment (13) estimates the true value of m for γ other
than γ∗. We estimated m̃sim(n, ν, γ) using a simulation similar to that performed by Hardin and Rocke (des-
cribed in the previous subsection) but extended to include the MCD(γ) for several values of γ other than γ∗

and more coverage of small sample sizes.5 We simulated N = 5000 draws of size n from a multivariate normal
distribution N(0, Iν) with dimensions ν = 3, 5, 7, 10, 15, 20 and sample sizes n = 50, 100, 250, 500, 750, 1000.
We calculated the MCD(γ) subset of each simulated data set for 0.05 ≤ γ ≤ 0.45 in increments of 0.05, as
well as maximum breakdown point case γ∗ and the extreme cases of γ = 0.01 and γ = 0.005. In order to
understand well how the Hardin-Rocke adjustment worked in small samples, we also included sample sizes

5Additional details on the simulation computations are available in Appendix B.
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Figure 1: Logarithms of 0.99 quantiles produced from Hardin-Rocke scaled F distribution (vertical axis) as
a function of the Wishart degrees of freedom parameter m (horizontal axis). The quantiles are shown for
several values of dimension ν (plot symbols and colors).

n = 3ν, 5ν, 7ν, 9ν, 11ν for the above dimensions and values of γ.6 We remind the reader that, as discussed in
Section 2.1, γ is an asymptotic trimming fraction. When n is small or γ is small, the number of observations
excluded from the MCD(γ) subset can be different from the asymptotic value of nγ. For example, when
ν = 3 and n = 3ν = 9, one observation is excluded from the MCD(0.01) subset, even though the value
b0.01× 9c = 0 might suggest that no observations will be excluded.

For each simulated data set and each value of γ we calculate the estimate m̃sim(n, ν, γ) of the Wishart
degrees of freedom m using Hardin and Rocke’s simulation procedure (described in the previous section).
The consistency constant c is estimated by the asymptotic version casy (Equation (11)).

We first considered how well the Hardin-Rocke adjustment estimated m for γ < γ∗. Figures 2–4 show,
for MCD(γ) with γ = 0.25, γ = 0.05, and γ = 0.01, respectively, the ratio of the Wishart degrees of
freedom m estimates obtained from simulation to those obtained from the Hardin-Rocke adjustment to the
asymptotic degrees of freedom. The range of sample sizes in each figure is constrained to n ≤ 250 to highlight
the behavior of the Hardin-Rocke adjustment in the smaller sample sizes typically encountered in financial
applications, e.g., n = 60 (five years of monthly returns) or n = 252 (one year of daily returns). We will
briefly describe the behavior for n > 250 as well, even though this range is not reflected in the figures.

In the γ = 0.25 case, the Hardin-Rocke adjustment leads to values of m that can be as much as 1.3 times
too large for sample sizes smaller than n = 250. As the sample size increases beyond n = 250, the Hardin-
Rocke estimated values of m are closer to the simulation values, with the convergence to equality requiring
larger sample sizes in lower dimensions. For the smaller trimming fractions γ = 0.05 and γ = 0.01, on the
other hand, the Hardin-Rocke adjustment over-estimates m by a factor as large as 2.5. The performance
of the adjustment steadily improves with sample size, however. Convergence to equality between the two
methods also takes a bit longer with the smaller trimming fractions.

Next we looked at whether the above inaccuracy in estimating m translated into meaningful differences in
6We use dimension-dependent sample sizes for small-sample coverage to avoid a subtle problem with fixed sample sizes like

n = 25: the MCD may be infeasible when n < 2ν. The R function covMcd will helpfully warn the user about such small sample
sizes.
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Figure 2: Comparison of Wishart degrees of freedom parameterm estimated via simulation and Hardin-Rocke
approach with γ = 0.25. The ratio of the degrees of freedom parameters coming from the Hardin-Rocke
approach to those resulting from the simulation is shown (stratified by dimension ν). Sample size is plotted
on the horizontal axis. Sample sizes shown in the plot are the dimension-dependent values n = 3ν, 5ν, 7ν, 9ν,
and 11ν (which hence vary between panels), as well as the fixed values n = 50, 100, 250. Not shown are ratios
for the sample sizes n = 500, 750, 1000. The dimension ν for each subgroup is shown in the yellow bars at
the top of each subplot.

the critical values for testing RSDs. Figures 5–7 show how the resulting 0.01 critical values computed using
Hardin and Rocke’s F distribution using the simulated and Hardin-Rocke estimated values of m compare
for γ = 0.25, γ = 0.05, and γ = 0.01 respectively. The overprediction of m seen in Figures 2–4 translates
into critical values that are smaller than they should be, as we would expect from Figure 1. In small samples
n < 250 and small dimensions ν ≤ 5 the critical values are typically about 80% as large as they should be
based on the value of m estimated from the simulation. For the smaller values of γ it takes slightly larger
sample sizes for the two methods to produce approximately equal critical values.

Overall we observe that the Hardin-Rocke adjustment (13) is quite accurate for producing 0.01 critical
values for sample sizes of at least 250 and γ ∈ {0.25, 0.05, 0.01}, but can result in critical values that are
much too small for sample sizes less than 100 and a bit too small for 100 < n ≤ 250. The inaccuracy is
worse for the smaller trimming fractions γ = 0.05 and γ = 0.01 compared to the γ = 0.25 case.7

Thus using the Hardin-Rocke adjustment for small values of γ, e.g., γ = 0.05 or γ = 0.01, and/or with
n ≤ 250 will result in flagging too many observations as outliers. This is concerning for our intended use of
RSD-based outlier tests in financial applications: it is quite common in financial applications to encounter
sample sizes n ≤ 100 (e.g., 2 years of weekly data or 5 years of monthly data), and financial practitioners
are often keen to use small values of γ. For financial applications of RSDs it is crucial to have an accurate
reference distribution for detecting potential outliers via RSDs in small samples and with small values of γ.
Therefore in the next section we develop a more general formula to estimate the true degrees of freedom
parameter m from the asymptotic value masy(n, ν, γ) that remains accurate across a wider range of sample

7We observed similar results for the 0.025 and 0.05 critical values.

Draft Date: July 23, 2017 Page 11



OVER−ESTIMATION of m
BY HARDIN−ROCKE METHOD

NUMBER OF OBSERVATIONS

H
A

R
D

IN
−

R
O

C
K

E
 m

/S
IM

U
LA

T
IO

N
 m

1.0

1.2

1.4

1.6

1.8

2.0

0 50 100 150 200 250

●

●

●

●

●
●

●

●

{ 3 }

●

●

●

●
●●

●

●

{ 5 }

● ● ●●

● ● ●

●

{ 7 }

1.0

1.2

1.4

1.6

1.8

2.0

●
● ● ● ●

●
●

{ 10 }
1.0

1.2

1.4

1.6

1.8

2.0

●
●

● ●●
● ●

●

{ 15 }

0 50 100 150 200 250

●
● ● ● ● ● ●

{ 20 }

Figure 3: Comparison of Wishart degrees of freedom parameter m estimated via simulation and Hardin-
Rocke approach with γ = 0.05. The plot setup is identical to that of Figure 2.
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Figure 4: Comparison of Wishart degrees of freedom parameter m estimated via simulation and Hardin-
Rocke approach with γ = 0.01. The plot setup is identical to that of Figure 2.
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UNDER−ESTIMATION of 0.01 CRITICAL VALUE
BY HARDIN−ROCKE METHOD
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Figure 5: Comparison of 0.01 critical values produced using Wishart degrees of freedom parameter m es-
timated via simulation and Hardin-Rocke approach with γ = 0.25. Critical values are calculated using the
scaled F distributional approximation of Hardin and Rocke with each degrees of freedom parameter estimate.
The ratio of the Hardin-Rocke critical values to those resulting from the simulation is shown (stratified by
dimension ν). The dotted line at a ratio of 1 indicates when the two critical values are approximately equal.
Sample size is plotted on the horizontal axis. The pattern of sample sizes used here is identical to that used
in Figure 2. The dimension ν is shown in the yellow bars at the top of each subplot.
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Figure 6: Comparison of 0.01 critical values produced from Wishart degrees of freedom parameter estimated
via simulation and Hardin-Rocke approach with γ = 0.05. The plot setup is identical to that of Figure 5.
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UNDER−ESTIMATION of 0.01 CRITICAL VALUE
BY HARDIN−ROCKE METHOD
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Figure 7: Comparison of 0.01 critical values produced from Wishart degrees of freedom parameter estimated
via simulation and Hardin-Rocke approach with γ = 0.01. The plot setup is identical to that of Figure 5.

sizes n, dimensions ν, and trimming fractions γ.

3.3 An Improved Adjustment to the Asymptotic Degrees of Freedom

We start our search for a better adjustment formula with some exploratory data analysis. Figure 8 shows
how the estimated values of m̃sim(n, ν, γ) from our simulation compare to the asymptotic values masy(n, ν, γ)

for varying levels of γ and dimension ν. The plots suggests the log ratio of the true m to masy(n, ν, γ) decays
inversely with a power of sample size n that depends on 1−γ. This is in sharp contrast to the model used in
the Hardin-Rocke adjustment, which posited that the log ratio varied with log(n) and did not allow for any
dependence of m on γ. Furthermore, with respect to the correct dependence of m on n, we know that since
the asymptotic formula should approach the true value of m as n → ∞, the quantity log(m/masy(n, ν, γ))

should go to zero as n → ∞. In the Hardin-Rocke adjustment, however, log(m/masy(n, ν, γ)) goes to ±∞
as n→∞, depending on the sign of β2, the coefficient of log(n) in (13).

In their analysis, Hardin and Rocke found that the dependence of log(m/masy(n, ν, γ)) on the dimension
ν was weak. We see that in our data as well, as is evidenced by the stacking of the points in each plot of
Figure 8. Finally the sign of the dependence relation changes for n ≤ 100 when γ ≤ 0.1. Here the MCD(γ)

estimator discards very few observations and becomes more like the sample covariance estimator.8

Based on the above observations, we propose the following power model for estimatingm frommasy(n, ν, γ)

in the general γ case:

log

(
m̃sim(n, ν, γ)

masy(n, ν, γ)

)
=
β0 + β1(1− γ) + β2ν

nβ3+β4(1−γ)
+ εn,ν,γ , εn,ν,γ

iid∼ N(0, 1). (14)

8The change in the shape of the log ratio curves for γ ≤ 0.05 does not appear to be an artifact of the simulation: we ran the
experiment for small samples and γ ≤ 0.05 multiple times, and observed very consistent behavior across the experimental runs.
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Figure 8: Logarithm of the ratio of the Wishart degrees of freedom estimated via simulation to the degrees
of freedom calculated from the asymptotic formula, plotted against sample size and stratified by γ (printed
in the yellow headers) and dimension (given by the plot symbols in each plot).
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We fit this model in R using nonlinear least squares (available via the nls function) using the m̃sim(n, ν, γ)

values from our expanded simulation as well as the corresponding values of n, ν, and γ. The final model fit
is

log

(
m

masy(n, ν, γ)

)
=

12.746− 14.546(1− γ) + 0.127ν

n0.559+0.149(1−γ) , (15)

and hence our improved adjustment model for estimating m from masy(n, ν, γ) is

m̃ = masy(n, ν, γ) exp

(
12.746− 14.546(1− γ) + 0.127ν

n0.559+0.149(1−γ)

)
. (16)

Table 1 provides the regression coefficients along with their standard errors. All the regression coefficients
are highly significant.

Table 1: Estimated coefficients, and their standard errors, for the model described by Equation (14).
Coefficient Estimate Std. Error t-Statistic
β0 12.746 0.305 41.8
β1 -14.546 0.368 -39.5
β2 0.127 0.007 17.5
β3 0.559 0.011 49.2
β4 0.149 0.018 8.2

4 Validation of the Improved Adjustment Model

4.1 Out-of-Sample Validation of the Hardin-Rocke Extension

To validate the fitted model (15), we used the same simulation procedure used in Section 3.3 with a different
parameter set: we simulated 5000 draws of size n from a multivariate normal distribution N(0, Iν) with
dimensions ν = 2, 3, 5, 8, 11, 16, 22 and sample sizes n = 50, 150, 300, 500, 750, 1000, as well as the dimension-
dependent sample sizes n = 4ν, 6ν, 8ν, 10ν, 12ν. For each sample we computed the MCD(γ) subset for
0.05 ≤ γ ≤ 0.45 in increments of 0.05, as well as the extreme cases of γ ∈ {0.01, 0.005}. We estimate
m̃sim(n, ν, γ) as before for each combination of parameters. We then use our new model to estimate m from
masy(n, ν, γ) for the corresponding values of n, ν, γ. With the output of this experiment we can examine
how well the new model predicts the Wishart degrees of freedom parameter m for general γ and compare
the new model’s performance to that of the Hardin-Rocke model for γ = γ∗.

Figures 9, 10, and 11 show how well our proposed method estimates the Wishart degrees of freedom
parameter m relative to the Hardin-Rocke method on the out-of-sample data set for γ = 0.25, 0.05, and 0.01

respectively. Each plot shows the ratios of the value of m estimated using each method to the simulated
value m̃sim(n, ν, γ) for a given combination of the n and ν values used in our out-of-sample testing. Our
proposed method is generally more accurate for estimating m than the Hardin-Rocke method, as evidenced
by the red triangles plotting near a ratio of 1.

Figures 12, 13, and 14 show how the better estimates of m from our proposed method translate into 0.01

critical values from the Hardin-Rocke F distribution for γ = 0.25, 0.05, and 0.01 respectively. Using our
out-of-sample data set, we calculated 0.01 critical values using the simulated m, the value of m estimated
from the Hardin-Rocke method, and the value of m estimated using our proposed method. The plot shows
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Figure 9: Out of sample comparison of estimated Wishart degrees of freedom parameter m to simulated
value m̃sim(n, ν, γ) using the Hardin-Rocke method and the proposed method with γ = 0.25. The plot shows
the ratio of the degrees of freedom parameter m estimated using a given method to the simulated value
m̃sim(n, ν, γ), stratified by dimension ν. Blue dots represent the estimate with the Hardin-Rocke method,
while red triangles represent the estimate with our proposed method. Sample size is plotted on the horizontal
axis. Sample sizes shown in the plot are the dimension-dependent values n = 2ν, 4ν, 6ν, 8ν, 10ν, 12ν (which
hence vary between panels), as well as the fixed values n = 50, 150, 300. The dimension ν for each subgroup
is shown in the yellow bars at the top of each subplot. The dashed line indicates the ideal ratio of 1.
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Figure 10: Out of sample comparison of estimated Wishart degrees of freedom parameter m to simulated
value m̃sim(n, ν, γ) using the Hardin-Rocke method and the proposed method with γ = 0.05. The plot setup
is identical to Figure 9.
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Figure 11: Out of sample comparison of estimated Wishart degrees of freedom parameter m to simulated
value m̃sim(n, ν, γ) using the Hardin-Rocke method and the proposed method with γ = 0.01. The plot setup
is identical to Figure 9.
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the ratios of the critical value computed from the estimated m to that computed using the simulated m for
the Hardin-Rocke method (blue dots) and our proposed method (red triangles) using each combination of n
and ν in the out-of-sample data set. Our proposed method generally results in much more accurate critical
values, particularly for γ = 0.05 and γ = 0.01. Our results for 0.001 critical values were very similar and are
not shown to conserve space.

Figure 15 shows how the proposed methodology performs relative to the Hardin-Rocke methodology for
the maximum breakdown point case γ = γ∗. As it turns out, the performance of our method depends
strongly on the ratio n/ν of the sample size to dimension, so our figure is structured accordingly. The
proposed correction is much more accurate (as evidenced by medians closer to 0) and much less variable (as
evidenced by smaller boxplot heights).9 A Mann-Whitney test of the hypothesis that the median difference
in the log-ratio of the predicted m to the simulated m between the Hardin-Rocke method and the proposed
method is 0 has a p-value of 0.028. If we conduct the same test within each n/ν group, the p-values are as
follows: (0, 5] : 0.002; (5, 10] : 1.2 × 10−7; (10, 20] : 0.021; and (20,∞) : 5 × 10−5. Thus the new method
is generally a modest improvement over Hardin and Rocke (2005) in the maximum breakdown point case
γ = γ∗, and a strong improvement for moderate values of n/ν and very large values of n/ν.

Finally, Figure 16 shows the out-of-sample performance, as measured by the logarithm of the ratio of the
predicted m to the simulated m, of our proposed improvement to the Hardin-Rocke methodology for the
values of γ tested.10 Again, the performance of our method depends on the ratio n/ν, so our figure reflects
this grouping. Generally the proposed method is very good when the sample size is between 5 and 20 times
the dimension: there is not much bias (the median ratios are close to 0) and not much dispersion in the
correction factors (as evidenced by the tight boxplot widths). For small samples (n < 5ν) the new method
is generally good for 0.05 ≤ γ ≤ 0.35, but shows some slight bias downward (meaning the corrected m is
smaller than the simulation suggests it should be) for γ > 0.35 and bias upward for γ < 0.05. In very large
samples n > 20ν and for 0.3 ≤ γ ≤ γ∗ our method overestimates m slightly. The median ratio over all cases
is approximately 1.01, so our model tends to overpredict m by 1% in general.

Overall, when the number of observations n is small compared to the dimension ν, the new method
still underpredicts the degrees of freedom parameter m slightly. For large samples the new method still
overpredicts m, but is more accurate on average than the Hardin-Rocke approach.

4.2 Testing that Our Model Gives the Correct False Positive Rates

As further validation of the fitted model, we ran a simulation experiment similar to that used by Hardin and
Rocke (2005) to create Tables 1 and 2 in their paper. We generated 5000 draws of size n from an uncontami-
nated multivariate normal distribution N(0, Iν) with dimension ν for sample sizes n = 50, 100, 250, 500, 1000

and ν = 5, 10, 20. For each observation in a sample, we computed the MCD(γ)-based RSDs for γ =

γ∗, 0.35, 0.25, 0.10, 0.05, 0.01. We tested observations for outlyingness at the α level by comparing these
RSDs to the 1− α quantile of the Hardin-Rocke F distribution with degrees of freedom m calculated using
the Hardin-Rocke adjustment (13) and using the new method (15) developed in this paper. Since the data
contains no outliers by construction, any outliers detected are false positives. We thus evaluate the perfor-
mance of the two methods for estimating m by comparing the empirically observed false positive rate from
the simulated data to the true value α. While we know the limitations of this exercise from the work of

9The large outlier for our new method in the 0 < n/ν ≤ 5 group corresponds to the case n = 8 and ν = 2. The large outliers
for our new method in the 5 < n/ν ≤ 10 group correspond to dimension ν = 2 with sample sizes n = 12, 16, 20.

10Full results are available in Table 5 in Appendix D.
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Figure 12: Out of sample comparison of 0.01 critical values from the Hardin-Rocke F distribution computed
using the estimated Wishart degrees of freedom parameter m from the Hardin-Rocke method and the propo-
sed method with γ = 0.25. The plot shows the ratio of the 0.01 critical value computed using the estimated
value of m to the 0.01 critical value computed using the simulated value of m for each method, stratified by
dimension ν. Blue dots represent the estimate with the Hardin-Rocke method, while red triangles represent
the estimate with our proposed method. Sample size is plotted on the horizontal axis. The pattern of sample
sizes used here is identical to that used in Figure 9. The dimension ν for each subgroup is shown in the
yellow bars at the top of each subplot. The dashed line indicates the ideal ratio of 1.
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Figure 13: Out of sample comparison of 0.01 critical values from the Hardin-Rocke F distribution compu-
ted using the estimated Wishart degrees of freedom parameter m from the Hardin-Rocke method and the
proposed method with γ = 0.05. The plot setup is identical to that of Figure 12.
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Figure 14: Out of sample comparison of 0.01 critical values from the Hardin-Rocke F distribution compu-
ted using the estimated Wishart degrees of freedom parameter m from the Hardin-Rocke method and the
proposed method with γ = 0.01. The plot setup is identical to that of Figure 12.
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Figure 15: Boxplot showing performance of the proposed correction methodology (NEW) against that of the
Hardin-Rocke methodology (HR05) for the maximum breakdown point case γ = γ∗, stratified by the ratio
n/ν of observations to variables. Performance is measured by the ratio of the predicted Wishart degrees of
freedom value to the value computed via the simulation methodology used in Hardin and Rocke (2005). For
the reader’s convenience, the pairs (ν, n) of dimensions and sample sizes that fall into each n/ν bin are listed
in the table below the plot.
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Figure 16: Boxplots showing the range of out of sample performance of the proposed correction methodology,
stratified by γ (yellow box) and the ratio n/ν of observations to variables (vertical axis). Performance is
measured by the ratio of the predicted Wishart degrees of freedom value to the value computed via the
simulation methodology used in Hardin and Rocke (2005). The dashed vertical lines at 1 correspond to
perfect agreement between prediction and simulation. Outliers are omitted from the plot to highlight the
overall performance of the method. The pairs (ν, n) of dimensions and sample sizes that fall into each bin
are identical to those used in Figure 15.
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Cerioli et al. (2009), this test does provide another comparison of our method to that of Hardin and Rocke.
Tables 2 and 3 show the results of testing how well each method of predicting m translates to outlier

detection using the above test. (The results for n = 1000 are similar to those for n = 500 and are omitted to
save space.) For n = 250 or n = 500, the Hardin-Rocke method leads to false positive rates that are smaller
than expected as γ gets closer to 0 or as dimension ν increases. For those sample sizes our proposed method
gives false positive rates that are closer to the ideal values of α for most γ values. Only in the γ = 0.01

case does our method become noticeably inaccurate, and even then it is still more accurate than the original
Hardin-Rocke approach.

For small samples (n = 100), our method gives false positive rates that are close to ideal for γ =

0.05, 0.10, 0.25, while the Hardin-Rocke method yields false positive rates that are too small. For γ = 0.35

our method has a higher false positive rate than expected, while the Hardin-Rocke method has a lower-than-
expected rate. At the maximum breakdown point case γ = γ∗ both methods exhibit higher false positive
rates than expected, and there is no clear winner between the two. Neither method is accurate for γ = 0.01,
but our method is far closer to the true α.
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In very small samples (n = 50) neither method is particularly accurate: the Hardin-Rocke method tends
to yield false positive rates that are too low, while our method yields rates that are too high for γ ≥ 0.25.
For γ = 0.10 or γ = 0.05 the false positve rate from our method is a bit smaller than the nominal size α,
but it is much closer to the truth than the rate resulting from the Hardin-Rocke method. The extreme case
of n = 50 and γ = 0.01 is particularly challenging for both methods.

One takeaway from the tables for finance practitioners is that for samples of size n = 50, one should not
use MCD(γ) with γ < 0.01, especially if the dimension ν is larger than 10. Likewise, for n = 100, γ = 0.05

is about as small as one can go and maintain fairly accurate false positive rates.

4.3 Extension of FSRMCD and IRMCD to Arbitrary γ

4.3.1 Cerioli’s FSRMCD and IRMCD Methodologies

Cerioli (2010) developed two methods for conducting accurate outlier tests using MCD-based RSDs, namely,
the Finite Sample Reweighted MCD and Iterated Reweighted MCD procedures. The Finite Sample Reweig-
hted MCD (FSRMCD) methodology is designed to control the family-wise error rate (FWER) for the set of
individual outlier tests

H0i : xi ∼ N (µ,Σ) , i = 1, . . . , n. (17)

The FWER is the probability that at least one of these hypotheses is rejected incorrectly. A well-known
approach to controlling the FWER of a set of tests is Bonferroni correction. Suppose we wish to achieve
a FWER of α1. If we test each individual hypothesis H0i at the α = α1/n level rather than the α1 level,
the FWER is guaranteed to be no more than α1 (by Bonferroni’s inequality). The Bonferroni correction
is conservative and does not require us to assume the tests are independent. It is hence widely applicable.
When the tests of the H0i are independent, the Šidák (1967) correction gives an exact FWER of α1 by testing
each individual hypothesis H0i at the α = 1− (1−α1)1/n level. The FSRMCD uses the Šidák correction and
the Hardin-Rocke distributional approximation to provide good control over the FWER of the individual
RSD tests and the correct size for the intersection hypothesis (Equation (3)).

As above, let α be the nominal size at which each individual hypothesis H0i is tested, and let α1 be the
nominal size for testing the intersection hypothesis. The FSRMCD method proceeds as follows.

1. For a given h or γ, compute the raw MCD(γ) on the data.

2. Compute RSDs based on the raw MCD. Test each observation at the 0.025 level for outlyingness
using the Hardin-Rocke distribution.11 Rejected observations are assigned weight 0, while all other
observations receive weight 1.

3. Compute the reweighted MCD estimate using the weights from Step 2.

4. Test RSDs based on the reweighted MCD using a distribution conditional on the weight of the corre-
sponding observation from Step 2: for observations receiving weight 1, we test RSDs against a scaled
Beta distribution. For observations with weight 0, we test RSDs against a scaled F distribution. These
tests are performed using a nominal size of α, e.g., α = 0.01.

As Cerioli (2010) points out, the FSRMCD procedure unfortunately has low power. The Iterated Re-
weighted MCD (IRMCD) test improves the power of FSRMCD by adding an additional step to the process.

11The value of 0.025 is based on a recommendation in Rousseeuw and van Driessen (1999) for the reweighted MCD.
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Let α1 be the desired nominal size of the intersection test. Then α = 1− (1− α1)1/n is the Šidák-corrected
size for the individual hypothesis tests.

4. In Step 4 of FSRMCD, test all RSDs using the conditional distribution at the α level.

5. If no observations are rejected by this test, we conclude that there is no evidence of outliers in the
data. If at least one observation is rejected, we then test each observation at the α1 level using the
distribution from Step 4. Any observation that fails its test is flagged as an outlier.

The first test ensures IRMCD will have the same false positive rate as FSRMCD for the intersection test,
while the second test improves our ability to correctly identify outliers when they are present in the data
set.

4.3.2 Modifying FSRMCD and IRMCD for Arbitrary γ

The FSRMCD and IRMCD procedures depend on the Hardin-Rocke methodology, which was only defined
for the maximum breakdown point case γ = γ∗. As we showed in Tables 2 and 3, the Hardin-Rocke estimator
for m can lead to false-positive rates that are much too small for γ ∈ {0.01, 0.05, 0.25} and sample sizes less
than 250. Our improved adjustment method performs much better than the Hardin-Rocke adjustment across
a wide range of sample sizes, dimensions, and trimming fractions. We thus implemented and tested modified
versions of FSRMCD and IRMCD using our improved adjustment. We will then be able to use the modified
versions in financial studies.

Simulations similar to those in Cerioli (2010) were run to verify the accuracy of modified implmentation.
We drew N = 5000 independent samples from an N(0, Iν) distribution, and estimated the size of the
intersection test (3) as the fraction of samples for which the null hypothesis is incorrectly rejected at the
0.01 level. We focused on the cases γ ∈ {γ∗, 0.25, 0.05, 0.01}: the former two for comparison with Cerioli’s
results, and γ ∈ {0.05, 0.01} for use in later chapters.12

Table 4 shows the results of testing our implementation of the finite-sample and iteratively reweighted
MCD estimators (FSRMCD and IRMCD, respectively) defined in Cerioli (2010). Overall our implementation
gives the right sizes empirically, and it produces results consistent with those presented in Table 1 and 2 of
that paper. (Table 6 in Appendix E provides standard deviations for the entries in the table.)

Power calculations for our modified implementation of IRMCD are discussed in Green (2017)

5 Discussion

Our modified version of the Hardin-Rocke adjustment to the asymptotic degrees of freedom parameter
estimate performs very well in general: in the out-of-sample tests portrayed in Figure 16 our predicted m
was larger than the simulated m by only 1%, on average, across all combinations of sample size, dimension,
and γ tested. The new method is more accurate, on average, than the Hardin and Rocke (2005) method,
and performs more consistently across a variety of sample sizes and dimensions.

For small samples n < 5ν there is still some bias, i.e., the predicted m tends to be too small for γ near
γ∗, and too large for γ near 0. Likewise for large samples n > 20ν the predicted m tends to be too large for
γ near γ∗ and a little too small for γ near 0. The deviations are not terribly large, though. For instance, for
small samples and γ = 0.005 the predicted value is 1.06 times the simulated value on average, which means

12The simulations and the analysis were performed on a laptop running Windows 7 Ultimate SP 1 with an Intel® Core™
i7-3740QM processor running at 2.7GHz and 32GB of RAM.
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Table 4: Results of simulation tests of FSRMCD and IRMCD implementations. The table shows the
estimated size for testing the hypothesis of no outliers in the data at the nominal size of 0.01. Ideally each
entry should be close to 0.01. The size is estimated using 5000 simulations for each combination of sample
size n and dimension ν. Compare to Table 1 of Cerioli (2010). (Table 6 in Appendix E provides standard
deviations for the entries in the table.)

Dimension Method n = 40 n = 60 n = 90 n = 125 n = 200 n = 400

γ = γ∗

FSRMCD 0.013 0.013 0.014 0.012 0.013 0.010
ν = 5 IRMCD 0.015 0.011 0.013 0.011 0.011 0.009

FSRMCD 0.023 0.012 0.009 0.010 0.008 0.008
ν = 10 IRMCD 0.020 0.014 0.010 0.010 0.008 0.008

FSRMCD 0.020 0.012 0.009 0.011 0.009 0.009
ν = 15 IRMCD 0.023 0.011 0.009 0.012 0.009 0.009

γ = 0.25
FSRMCD 0.013 0.012 0.011 0.010 0.012 0.009

ν = 5 IRMCD 0.013 0.014 0.012 0.012 0.010 0.011

FSRMCD 0.013 0.013 0.012 0.014 0.010 0.010
ν = 10 IRMCD 0.015 0.011 0.007 0.010 0.012 0.008

FSRMCD 0.012 0.012 0.011 0.007 0.009 0.008
ν = 15 IRMCD 0.012 0.012 0.012 0.009 0.010 0.010

γ = 0.05
FSRMCD 0.010 0.011 0.012 0.011 0.011 0.012

ν = 5 IRMCD 0.011 0.012 0.010 0.011 0.011 0.010

FSRMCD 0.011 0.011 0.013 0.009 0.012 0.010
ν = 10 IRMCD 0.013 0.013 0.011 0.014 0.013 0.010

FSRMCD 0.019 0.013 0.015 0.012 0.011 0.013
ν = 15 IRMCD 0.017 0.011 0.015 0.009 0.012 0.009

γ = 0.01
FSRMCD 0.006 0.008 0.012 0.010 0.006 0.011

ν = 5 IRMCD 0.006 0.009 0.008 0.008 0.010 0.011

FSRMCD 0.007 0.009 0.005 0.010 0.009 0.010
ν = 10 IRMCD 0.007 0.007 0.009 0.006 0.007 0.009

FSRMCD 0.009 0.008 0.005 0.007 0.008 0.010
ν = 15 IRMCD 0.008 0.007 0.009 0.011 0.009 0.010

Draft Date: July 23, 2017 Page 31



a true m of 50 is predicted to be 53; this translates into critical values that are 1-2% too small in dimensions
less than 10. In higher dimensions, e.g., larger than 20, the difference in the critical values will be larger and
might have a more noticable impact on outlier detection.

Due to the computational requirements of the simulations done here, we were only able to run the full
experiment once. Thus, we do not know how variable the simulated m can be in general.13 However, in the
process of investigating the behavior of the simulated m for γ near 0, we did run the γ ≤ 0.1 cases several
times. As the sample size n gets larger, we observed more variation in the simulated value of m; however this
does not seem to translate into much variation in the resulting 0.01 critical values. For small sample sizes
(n < 100) or when n is a small multiple of ν, there can be a wider range of critical values resulting from the
simulated m values. The MCD estimate with γ ≤ 0.1 is discarding relatively few observations, so a potential
improvement to our methodology might consider an alternative approach to calculating the distribution of
the MCD estimate in such cases.

6 Conclusions and Further Research

We have extended the Hardin and Rocke (2005) methodology for estimating parameters of their F distribu-
tion to the general MCD(γ) estimator, thereby ensuring that the FSRMCD and IRMCD outlier detection
methodologies introduced by Cerioli (2010) give the right test sizes for arbitrary γ (as long as the sample
size is not very small compared to the dimension).

For some applications the MCD may not be the best robust dispersion estimate to use. Maronna et al.
(2006) recommend the use of so-called S-estimators over the MCD based on a simulation study detailed
in their Chapter 6.8. They demonstrate that certain types of S-estimators offer a better balance of bias
and variability than the MCD. Briefly, an S-estimate

(
µ̃, Σ̃

)
of multivariate location and dispersion tries to

minimize a univariate robust scale estimate σ̂ of the RSDs (based on µ̃ and Σ̃) subject to constraints on the
determinant of the dispersion estimate Σ̃. The Maronna et al. (2006) study considered S-estimators based on
two different robust scale estimates σ̂: one defined using the Tukey bisquare ρ function and another based on
the Rocke (1996) biflat ρ function. The bisquare-based S-estimator can be configured to have the maximum
asymptotic breakdown point of 1/2, but as the dimension ν increases it becomes more efficient, and hence,
more biased and less robust to outliers. The Rocke-type S-estimator was designed to approximately maintain
a desired level of efficiency and robustness as the dimension of the data increases. (These estimators are
discussed in greater detail in Appendix A of Green (2017).) Not surprisingly, the simulations of Maronna
et al. show that the bisquare S-estimator is preferred to the MCD for dimension ν < 10, while the Rocke-type
S-estimator is preferred for dimension ν ≥ 10.

Furthermore, Alqallaf et al. (2009) points out that the MCD is based on the so-called Tukey-Huber
Contamination Model.14 The Tukey-Huber Contamination Model assumes that whether a given observation
xi is contaminated (i.e., comes from a distribution different from the other observations) is independent of
whether any other observation xj is contaminated, but if an observation xi = (xi,1, . . . , xi,ν) is contaminated
then all of its coordinates xi,k are assumed to be contaminated. Typically in the Tukey-Huber Contamination
Model the (uncontaminated) bulk of the data is assumed to follow a multivariate normal distribution. Some
of the implications of the above assumption are hence that (a) most observations fit the multivariate normal
assumption well; (b) outlying observations can be detected and trimmed in a multivariate manner; and (c)

13Recall that the commonly used fastMCD procedure of Rousseeuw and van Driessen (1999) involves random sampling as
well, which is an additional source of variability in the m estimates.

14Agostinelli and Yohai (2017) provide a review of the the Tukey-Huber and Independent Contamination Models.
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affine equivariance can be invoked to justify studying robustness and outlier detection only for a multivariate
normal distribution with mean vector 0 and the identity matrix Iν for covariance.

In many applications, observations may only be outlying in a few coordinates, however, and a significant
fraction of observations may exhibit some degree of contamination. Alqallaf et al. introduce a more flexible
contamination model, the Independent Contamination Model (ICM), that allows not only the observations
xi to be contaminated independently of one another, but also the coordinates xi,k1 to be contaminated
independently of any other coordinates xi,k2 within a given observation. Alqallaf et al. demonstrate that the
MCD performs poorly under this contamination model: while MCD(γ∗) has asymptotic breakdown point
1/2 under the Tukey-Huber Model, it can exhibit a breakdown point near 0 under the ICM. Hence RSDs
based on the MCD under the ICM might not be much more robust to outliers than Mahalanobis distances
based on the sample mean and covariance. Robust estimators that build up an estimate of the dispersion
matrix from consideration of pairs of observations are better suited to analyzing data whose outlier structure
is more accurately captured by the ICM. For example, the Orthogonalized Gnanadesikan-Kettenring (OGK)
robust dispersion estimator, developed by Gnanadesikan and Kettenring (1972), Devlin et al. (1981), and
Maronna and Zamar (2002) is well-known estimator based on pairwise robust covariance analysis. (Appendix
A of Green (2017) provides additional detail on the OGK estimator.) The quadrant correlation is another
common robust dispersion estimate based on pairwise analyses (Huber, 1981).

In a previous paper (Martin et al., 2010) we used OGK-based RSDs to investigate the existence and
prevalence of multivariate outliers in the type of financial data used to build fundamental factor models.
Given the results of Cerioli et al. (2009) for the maximum-breakdown point version of the MCD, however,
it was of interest to understand whether OGK and other robust dispersion-based estimates suffered from
the same problem. In a companion study (documented in Appendix A of Green (2017)) we showed that
several other robust dispersion estimates exhibit, to varying degrees, the problems with the RSD test for
outliers that Cerioli et al. (2009) found for the MCD estimate. The results of the simulation show that the
S-estimators and the OGK also suffer from inflated average false positive rates like the MCD, for both the
individual and intersection tests. The OGK performs better than the MCD, in that average false positive
rates for OGK-based RSDs are inflated much less than the rates for MCD-based RSDs, and the inflation
factor is roughly independent of the dimension ν.

Thus, correction methodologies are also needed for other robust dispersion estimators such as S-estimators
and the OGK estimate. A correction methodology for the OGK estimator would be valuable due to the
comparative computational simplicity of the OGK in higher dimensions and its appeal in dealing with
componentwise contamination scenarios. We are not aware of a correction procedure for the OGK, however,
and the IRMCD method does not obviously apply as the OGK and MCD estimates have very different
structure. Thus it seems for the time, OGK-based RSDs cannot be safely used for financial applications
unless the sample sizes are large (n ≥ 500). For the moment, MCD-based distances with the IRMCD
procuedure are our only viable option for reliable RSD-based tests of outlyingness.

We have only considered outlier detection in a multivariate normal framework in this paper. Real data,
especially financial data, often exhibit skewness and heavy tails that give rise to outliers. In such cases it
becomes more difficult to define what an outlier is and to identify them in the data. An important research
direction for the future is outlier detection in more general univariate and multivariate distributions such as
elliptical and skewed elliptical distributions. We refer the reader to the recent book of Azzalini and Capitanio
(2014) and the references therein for further discussion of the latter.

Extreme value theory has also proven to be quite useful for modeling skewed and heavy-tailed financial
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data. Some initial work on the compatibility of robust methods and extreme value theory has been done by
several authors. Vandewalle et al. (2004) showed how to construct a robust estimator of the tail-index of a
Pareto-type distribution using robust regression techniques. Dell’Aquila and Embrechts (2006) showed how
to use robust methods to construct estimators for extreme value distributions that are not highly influenced
by observations that do not conform to same distribution as the bulk of the data. Goegebeur et al. (2014)
proposed a robust estimator for extreme quantiles of heavy-tailed distributions. Additional research on
applications of outlier detection in the context of extreme value models would be very beneficial to financial
practitioners focused on risk management.

A Croux-Haesbroeck Formulas for the Asymptotic Variance of the

MCD Estimate

Croux and Haesbroeck (1999) derive the influence function for the MCD estimate SMCD under the as-
sumption of observations with a multivariate elliptical distribution. This influence function can be used to
calculate the variance of the MCD estimate, and hence, the variance of the diagonal elements sjj that was
needed to derive the method of moments estimate m in Section 3.1. Hardin and Rocke (2005) calculated
the variance of the sjj for the specific case of a multivariate normal distribution using the Croux-Haesbroeck
result, and provided their formulas in an appendix to their paper. We reproduce these formulas here for the
reader’s convenience.

Here γ = 1− h/n is the (asymptotic) fraction of observations trimmed by the MCD as in the main text,
and q(ν, 1− γ) is the 1− γ quantile of a χ2

ν distribution and satisfies 1− γ = P (χ2
ν ≤ q(ν, 1− γ)).

c(ν, γ) =
1− γ

P
(
χ2
ν+2 ≤ q(ν, 1− γ)

)
c2(ν, γ) =

−P
(
χ2
ν+2 ≤ q(ν, 1− γ)

)
2

c3(ν, γ) =
−P

(
χ2
ν+4 ≤ q(ν, 1− γ)

)
2

c4(ν, γ) = 3c3(ν, γ)

b1(ν, γ) =
c(ν, γ)(c3(ν, γ)− c4(ν, γ)

1− γ

b2(ν, γ) =
1

2
+
c(ν, γ)

1− γ

(
c3(ν, γ)− q(ν, 1− γ)

ν

(
c2(ν, γ) +

1− γ
2

))
v1(ν, γ) = (1− γ)b1(ν, γ)2

(
γ

(
c(ν, γ)q(ν, 1− γ)

ν
− 1

)2

− 1

)
−

2c3(ν, γ)c(ν, γ)2
(

3 (b1(ν, γ)− νb2(ν, γ))
2

+

(ν + 2)b2(ν, γ)(2b1(ν, γ)− νb2(ν, γ)))

v2(ν, γ) = (b1(ν, γ) (b1(ν, γ)− νb2(ν, γ)) (1− γ))
2
c(ν, γ)2

v(ν, γ) =
v1(ν, γ)

nv2(ν, γ)
.
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B Replicating the Hardin-Rocke Extension Simulations

The simulations used to build and to validate our Hardin-Rocke extension were performed on a 16-node
computing cluster managed by the University of Washington Department of Statistics. Each node has an
8-core, Intel Xeon® E5410 2.33GhZ processor and 16GB of RAM, and runs Debian Linux 7.1. We used
R 3.0.2 (64-bit) to conduct the simulations. We implemented the simulation and verification steps in two
packages, CerioliOutlierDetection and HardinRockeExtensionSimulations, described below.

Data analysis, modeling, and plotting were performed on a laptop running Windows 7 Ultimate SP 1
with an Intel® Core™ i7-3740QM processor running at 2.7GHz and 32GB of RAM. A full listing of packages
used (and their versions) is provided below to aid reproducibility of our results.

B.1 R Session Details
> sessionInfo()
R version 3.0.2 (2013-09-25)
Platform: x86_64-w64-mingw32/x64 (64-bit)

locale:
[1] LC_COLLATE=English_United States.1252
[2] LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252
[4] LC_NUMERIC=C
[5] LC_TIME=English_United States.1252

attached base packages:
[1] parallel stats graphics grDevices utils datasets
[7] methods base

other attached packages:
[1] HardinRockeExtensionSimulations_1.0 rrcov_1.3-4
[3] pcaPP_1.9-49 mvtnorm_0.9-9997
[5] abind_1.4-0 CerioliOutlierDetection_1.0.0
[7] robustbase_0.90-2

loaded via a namespace (and not attached):
[1] DEoptimR_1.0-1 stats4_3.0.2

B.2 The CerioliOutlierDetection R Package

This R package implements the outlier detection methodology of Cerioli (2010) based on Mahalanobis dis-
tances and the minimum covariance determinant (MCD) estimate of dispersion. It also implements the
extension to Hardin and Rocke (2005) developed in this paper. The package is available on CRAN (Green
and Martin, 2014).

B.3 The HardinRockeExtensionSimulations R Package

This package contains scripts to perform the simulations described in this paper. It can be downloaded via
git or a web browser from Christopher Green’s GitHub repository:

http://christopherggreen.github.io/HardinRockeExtensionSimulations/
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The easiest way to install this package in R is via the devtools package:

> require(devtools)

> install_github("christopherggreen/HardinRockeExtensionSimulations")

C Simulated Degrees of Freedom and Consistency Factor

A table containing the Wishart degrees of freedom parameter m and consistency factor c calculated via
simulation is available in the HardinRockeExtensionSimulations package described above. These values
were used to fit the model shown in Equation (15).

D Full Results of Out of Sample Tests of Proposed Modification to

Hardin and Rocke (2005) Methodology

Table 5 provides the out of sample results from testing the model shown in Equation (15). The table shows
the ratio of the predicted degrees of freedom to the simulated degrees of freedom.
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Table 6: Monte Carlo standard deviations of simulation tests of FSRMCD and IRMCD implementations.
Standard errors for the quantities in Table 4 can be obtained by dividing the corresponding entries in this
table by

√
5000.

Dimension Method n = 40 n = 60 n = 90 n = 125 n = 200 n = 400

γ = γ∗

FSRMCD 0.113 0.115 0.119 0.107 0.112 0.100
ν = 5

IRMCD 0.123 0.105 0.113 0.105 0.102 0.092

FSRMCD 0.150 0.111 0.095 0.100 0.091 0.089
ν = 10

IRMCD 0.141 0.118 0.100 0.098 0.090 0.091

FSRMCD 0.141 0.111 0.097 0.104 0.092 0.093
ν = 15

IRMCD 0.149 0.103 0.097 0.108 0.093 0.092

γ = 0.25
FSRMCD 0.113 0.108 0.102 0.099 0.111 0.097

ν = 5
IRMCD 0.115 0.118 0.108 0.108 0.101 0.102

FSRMCD 0.113 0.112 0.110 0.118 0.101 0.100
ν = 10

IRMCD 0.120 0.103 0.082 0.100 0.110 0.091

FSRMCD 0.108 0.108 0.102 0.086 0.092 0.089
ν = 15

IRMCD 0.111 0.107 0.109 0.095 0.100 0.099

γ = 0.05
FSRMCD 0.100 0.105 0.108 0.105 0.105 0.107

ν = 5
IRMCD 0.105 0.109 0.101 0.102 0.102 0.100

FSRMCD 0.106 0.106 0.115 0.097 0.109 0.101
ν = 10

IRMCD 0.114 0.112 0.102 0.118 0.115 0.100

FSRMCD 0.136 0.113 0.120 0.111 0.104 0.113
ν = 15

IRMCD 0.131 0.105 0.122 0.097 0.109 0.093

γ = 0.01
FSRMCD 0.077 0.090 0.109 0.100 0.076 0.105

ν = 5
IRMCD 0.076 0.095 0.089 0.087 0.100 0.105

FSRMCD 0.085 0.097 0.071 0.101 0.092 0.098
ν = 10

IRMCD 0.085 0.081 0.094 0.080 0.086 0.095

FSRMCD 0.093 0.088 0.073 0.083 0.090 0.098
ν = 15

IRMCD 0.090 0.085 0.092 0.103 0.092 0.099

E Standard Deviations for FSRMCD and IRMCD Simulation Tests

Table 6 provides standard deviations for the simulation results presented in Table 4. Standard errors for
entries in the latter table can be calculated by dividing the corresponding entry of this table by

√
5000.
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